Robert L. Byer

Robert L. Byer

Stanford University

H-index: 164

North America-United States

Professor Information

University

Stanford University

Position

Professor Applied Physics

Citations(all)

145541

Citations(since 2020)

73662

Cited By

99877

hIndex(all)

164

hIndex(since 2020)

90

i10Index(all)

673

i10Index(since 2020)

360

Email

University Profile Page

Stanford University

Research & Interests List

optics

nonlinear optics

lasers

laser accelerators

Top articles of Robert L. Byer

A joint Fermi-GBM and Swift-BAT analysis of Gravitational-wave candidates from the third Gravitational-wave Observing Run

The detection of GW170817 (Abbott et al. 2017b) coincident with the short gamma-ray burst GRB 170817A (Goldstein et al. 2017; Savchenko et al. 2017) was a groundbreaking discovery for the multimessenger era. Not only was it the first binary neutron star (BNS) merger detected by the gravitational-wave (GW) instruments Advanced LIGO (Aasi et al. 2015) and Advanced Virgo (Acernese et al. 2014), it was also the first, and to date only, GW detection with a confirmed electromagnetic (EM) counterpart. Since then, the search for EM emission from more of these extreme events has been at the forefront of multimessenger astronomy, particularly in the gamma-ray energy band, since GRB 170817A demonstrated that BNS mergers are a progenitor of short gamma-ray bursts (GRBs; Abbott et al. 2017a). GWs have also been observed from the mergers of other compact objects, such as binary black hole (BBH) and …

Authors

C Fletcher,J Wood,R Hamburg,P Veres,CM Hui,E Bissaldi,MS Briggs,E Burns,WH Cleveland,MM Giles,A Goldstein,BA Hristov,D Kocevski,S Lesage,B Mailyan,C Malacaria,S Poolakkil,A von Kienlin,CA Wilson-Hodge,M Crnogorčević,J DeLaunay,A Tohuvavohu,R Caputo,SB Cenko,S Laha,T Parsotan,R Abbott,H Abe,F Acernese,K Ackley,N Adhikari,RX Adhikari,VK Adkins,VB Adya,C Affeldt,D Agarwal,M Agathos,K Agatsuma,N Aggarwal,OD Aguiar,Luca Aiello,A Ain,P Ajith,T Akutsu,S Albanesi,RA Alfaidi,A Allocca,PA Altin,A Amato,C Anand,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Ando,T Andrade,N Andres,M Andrés-Carcasona,T Andríc,SV Angelova,S Ansoldi,JM Antelis,S Antier,T Apostolatos,EZ Appavuravther,S Appert,SK Apple,K Arai,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,M Arogeti,SM Aronson,KG Arun,H Asada,Y Asali,G Ashton,Y Aso,M Assiduo,S Melo,SM Aston,P Astone,F Aubin,K AultONeal,C Austin,S Babak,F Badaracco,MKM Bader,C Badger,S Bae,Y Bae,AM Baer,S Bagnasco,Y Bai,J Baird,R Bajpai,T Baka,M Ball,G Ballardin,SW Ballmer,A Balsamo,G Baltus,S Banagiri,B Banerjee,D Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,S Basak,R Bassiri,A Basti,M Bawaj,JC Bayley,M Bazzan,BR Becher,B Bécsy,VM Bedakihale,F Beirnaert,M Bejger,I Belahcene,V Benedetto,D Beniwal,MG Benjamin,TF Bennett,JD Bentley,M BenYaala,S Bera,M Berbel,F Bergamin,BK Berger,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare

Journal

arXiv preprint arXiv:2308.13666

Published Date

2023/8/25

arXiv: Ultralight vector dark matter search using data from the KAGRA O3GK run

Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U (1) B− L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U (1) B− L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM.

Authors

AG Abac,ML Chiofalo,G Nieradka,R Pegna,C North,R Bhandare,G Pierra,A Amato,JG Baier,D Chen,B Haskell,F Robinet,M Fyffe,M Arogeti,P Stevens,DD White,TF Davies,E Payne,M Wright,K Johansmeyer,K Hayama,P-F Cohadon,CG Collette,D Sellers,S Hoang,V Sipala,H Heitmann,T O'Hanlon,B Edelman,G McCarrol,AD Huddart,KD Sullivan,T Harder,A Garron,TA Clarke,YT Huang,J Junker,M Hennig,N Hirata,J Portell,R McCarthy,M Weinert,R Poulton,G Ballardin,D Bankar,A Bianchi,M Montani,CD Panzer,X Chen,R Takahashi,J Lange,K Schouteden,Yitian Chen,A Sasli,F Yang,LM Modafferi,ME Zucker,J O'Dell,D Lumaca,AP Spencer,M Millhouse,G Quéméner,M Norman,MJ Szczepańczyk,S-C Hsu,ST Countryman,C Chatterjee,AL James,KN Nagler,E Chassande-Mottin,W Kiendrebeogo,M Tacca,FJ Raab,TR Saravanan,VP Mitrofanov,S Bernuzzi,C Adamcewicz,L Conti,C Tong-Yu,J Golomb,X Li,A Perego,ERG von Reis,J Woehler,G Bogaert,F Fidecaro,B Shen,JM Ezquiaga,D Macri,V Juste,S Sachdev,JD Bentley,R Sturani,TP Lott IV,K Takatani,D Beniwal,U Dupletsa,A Boumerdassi,F Glotin,Y Lee,R Bhatt,A Couineaux,M Wade,N Kanda,J Novak,S Bini,I Ferrante,RA Alfaidi,N Johny,LE Sanchez,J Heinze,J Zhang,M Kinley-Hanlon,AJ Weinstein,T Sainrat,NN Janthalur,A Trovato,A Romero,K Tomita,DE McClelland,B Fornal,M Heurs,AM Gretarsson,A Chincarini,BB Lane,AE Romano,V Fafone,FY Khalili,F Linde,C Messick,A Heffernan,J Gargiulo,V JaberianHamedan,SW Reid,D Moraru,D Pathak,M Iwaya,G Grignani,T Yan,K AultONeal,SA Pai,Y Xu,IM Pinto,KW Chung,C Palomba,J Tissino,T Klinger,Ll M Mir,K Kwan,C Posnansky

Published Date

2024/3/5

Ultralight vector dark matter search using data from the KAGRA O3GK run

Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM.

Authors

AG Abac,R Abbott,H Abe,I Abouelfettouh,F Acernese,K Ackley,C Adamcewicz,S Adhicary,N Adhikari,RX Adhikari,VK Adkins,VB Adya,C Affeldt,D Agarwal,M Agathos,OD Aguiar,I Aguilar,L Aiello,A Ain,P Ajith,T Akutsu,S Albanesi,RA Alfaidi,A Al-Jodah,C Alléné,A Allocca,S Al-Shammari,PA Altin,S Alvarez-Lopez,A Amato,L Amez-Droz,A Amorosi,C Amra,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Andia,M Ando,T Andrade,N Andres,M Andrés-Carcasona,T Andrić,J Anglin,S Ansoldi,JM Antelis,S Antier,M Aoumi,EZ Appavuravther,S Appert,SK Apple,K Arai,A Araya,MC Araya,JS Areeda,N Aritomi,F Armato,N Arnaud,M Arogeti,SM Aronson,KG Arun,G Ashton,Y Aso,M Assiduo,S Melo,SM Aston,P Astone,F Aubin,K AultONeal,G Avallone,S Babak,F Badaracco,C Badger,S Bae,S Bagnasco,E Bagui,Y Bai,JG Baier,R Bajpai,T Baka,M Ball,G Ballardin,SW Ballmer,S Banagiri,B Banerjee,D Bankar,P Baral,JC Barayoga,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,SD Barthelmy,MA Barton,I Bartos,S Basak,A Basalaev,R Bassiri,A Basti,M Bawaj,P Baxi,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,F Beirnaert,M Bejger,D Belardinelli,AS Bell,V Benedetto,D Beniwal,W Benoit,JD Bentley,M Ben Yaala,S Bera,M Berbel,F Bergamin,BK Berger,S Bernuzzi,M Beroiz,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,N Bevins,R Bhandare,U Bhardwaj,R Bhatt,D Bhattacharjee,S Bhaumik,S Bhowmick,A Bianchi,IA Bilenko,G Billingsley,A Binetti,S Bini,O Birnholtz,S Biscoveanu,A Bisht,M Bitossi,M-A Bizouard,JK Blackburn,CD Blair,DG Blair,F Bobba

Journal

arXiv preprint arXiv:2403.03004

Published Date

2024/3/5

Subrelativistic Alternating Phase Focusing Dielectric Laser Accelerators

We demonstrate a silicon-based electron accelerator that uses laser optical near fields to both accelerate and confine electrons over extended distances. Two dielectric laser accelerator (DLA) designs were tested, each consisting of two arrays of silicon pillars pumped symmetrically by pulse front tilted laser beams, designed for average acceleration gradients 35 and 50 MeV/m, respectively. The DLAs are designed to act as alternating phase focusing (APF) lattices, where electrons, depending on the electron-laser interaction phase, will alternate between opposing longitudinal and transverse focusing and defocusing forces. By incorporating fractional period drift sections that alter the synchronous phase between±6 0 off crest, electrons captured in the designed acceleration bucket experience half the peak gradient as average gradient while also experiencing strong confinement forces that enable long interaction …

Authors

Payton Broaddus,Thilo Egenolf,Dylan S Black,Melanie Murillo,Clarisse Woodahl,Yu Miao,Uwe Niedermayer,Robert L Byer,Kenneth J Leedle,Olav Solgaard

Journal

Physical Review Letters

Published Date

2024/2/23

GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run

The second Gravitational-Wave Transient Catalog, GWTC-2, reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15∶ 00 UTC and 1 October 2019 15∶ 00 UTC. Here, we present GWTC-2.1, which reports on a deeper list of candidate events observed over the same period. We analyze the final version of the strain data over this period with improved calibration and better subtraction of excess noise, which has been publicly released. We employ three matched-filter search pipelines for candidate identification, and estimate the probability of astrophysical origin for each candidate event. While GWTC-2 used a false alarm rate threshold of 2 per year, we include in GWTC-2.1, 1201 candidates that pass a false alarm rate threshold of 2 per day. We calculate the source properties of a subset of 44 high-significance candidates that have a …

Authors

R Abbott,TD Abbott,F Acernese,K Ackley,C Adams,N Adhikari,RX Adhikari,VB Adya,C Affeldt,D Agarwal,M Agathos,K Agatsuma,N Aggarwal,OD Aguiar,L Aiello,A Ain,P Ajith,S Albanesi,A Allocca,PA Altin,A Amato,C Anand,S Anand,A Ananyeva,SB Anderson,WG Anderson,T Andrade,N Andres,T Andrić,SV Angelova,S Ansoldi,JM Antelis,S Antier,S Appert,K Arai,MC Araya,JS Areeda,M Arène,N Arnaud,SM Aronson,KG Arun,Y Asali,G Ashton,M Assiduo,SM Aston,P Astone,F Aubin,C Austin,S Babak,F Badaracco,MKM Bader,C Badger,S Bae,AM Baer,S Bagnasco,Y Bai,J Baird,M Ball,G Ballardin,SW Ballmer,A Balsamo,G Baltus,S Banagiri,D Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,R Bassiri,A Basti,M Bawaj,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,M Bejger,I Belahcene,V Benedetto,D Beniwal,TF Bennett,JD Bentley,M Benyaala,F Bergamin,BK Berger,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare,U Bhardwaj,D Bhattacharjee,S Bhaumik,IA Bilenko,G Billingsley,S Bini,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,M-A Bizouard,JK Blackburn,CD Blair,DG Blair,RM Blair,F Bobba,N Bode,M Boer,G Bogaert,M Boldrini,LD Bonavena,F Bondu,E Bonilla,R Bonnand,P Booker,BA Boom,R Bork,V Boschi,N Bose,S Bose,V Bossilkov,V Boudart,Y Bouffanais,A Bozzi,C Bradaschia,PR Brady,A Bramley,A Branch,M Branchesi,JE Brau,M Breschi,T Briant,JH Briggs,A Brillet,M Brinkmann

Journal

Physical Review D

Published Date

2024/1/5

Progress and laser requirements for on-chip laser accelerators

Acceleration of particles in photonic nanostructures fabricated using semiconductor manufacturing techniques and driven by ultrafast solid state lasers is a new and promising approach to developing future generations of compact particle accelerators. Substantial progress has been made in this area in recent years, fueled by a growing international collaboration of universities, national laboratories, and companies. Performance of these micro-accelerator devices is ultimately limited by laser-induced material breakdown limits, which can be substantially higher for optically driven dielectrics than for radio-frequency metallic cavities traditionally used in modern particle accelerators, allowing for 1 to 2 order of magnitude increase in achievable accelerating fields. The lasers required for this approach are commercially available with moderate (micro-Joule class) pulse energies and repetition rates in the MHz regime. We …

Authors

Joel England,Robert L Byer,Peter Hommelhoff

Published Date

2024/4/11

Population of merging compact binaries inferred using gravitational waves through GWTC-3

We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 (GWTC-3) contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron star–black hole mergers. We infer the binary neutron star merger rate to be between 10 and 1700 Gpc− 3 yr− 1 and the neutron star–black hole merger rate to be between 7.8 and 140 Gpc− 3 yr− 1, assuming a constant rate density in the comoving frame and taking the union of 90% credible intervals for methods used in this work. We infer the binary black hole merger rate, allowing for evolution with redshift, to be between 17.9 and 44 Gpc− 3 yr− 1 at a fiducial redshift (z= 0.2). The rate of binary black hole mergers is observed to increase with redshift at a rate proportional …

Authors

R Abbott,TD Abbott,F Acernese,K Ackley,C Adams,N Adhikari,RX Adhikari,VB Adya,C Affeldt,D Agarwal,M Agathos,K Agatsuma,N Aggarwal,Odylio Denys de Aguiar,L Aiello,A Ain,P Ajith,T Akutsu,PF De Alarcón,S Akcay,S Albanesi,A Allocca,PA Altin,A Amato,C Anand,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Ando,T Andrade,N Andres,T Andrić,SV Angelova,S Ansoldi,JM Antelis,S Antier,F Antonini,S Appert,Koji Arai,Koya Arai,Y Arai,S Araki,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,M Arogeti,SM Aronson,KG Arun,H Asada,Y Asali,G Ashton,Y Aso,M Assiduo,SM Aston,P Astone,F Aubin,C Austin,Stanislav Babak,F Badaracco,MKM Bader,C Badger,S Bae,Y Bae,AM Baer,S Bagnasco,Y Bai,L Baiotti,J Baird,R Bajpai,M Ball,G Ballardin,SW Ballmer,A Balsamo,G Baltus,S Banagiri,D Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,R Bassiri,A Basti,M Bawaj,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,M Bejger,I Belahcene,V Benedetto,D Beniwal,TF Bennett,JD Bentley,M Benyaala,F Bergamin,BK Berger,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare,U Bhardwaj,D Bhattacharjee,S Bhaumik,IA Bilenko,G Billingsley,S Bini,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,M-A Bizouard,JK Blackburn,CD Blair,DG Blair,RM Blair,F Bobba,N Bode,M Boer,G Bogaert,M Boldrini,LD Bonavena,François Bondu,E Bonilla,R Bonnand,P Booker,BA Boom,R Bork,V Boschi,N Bose

Journal

Physical Review X

Published Date

2023/3/29

GWTC-3: compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run

The third Gravitational-Wave Transient Catalog (GWTC-3) describes signals detected with Advanced LIGO and Advanced Virgo up to the end of their third observing run. Updating the previous GWTC-2.1, we present candidate gravitational waves from compact binary coalescences during the second half of the third observing run (O3b) between 1 November 2019, 15∶ 00 Coordinated Universal Time (UTC) and 27 March 2020, 17∶ 00 UTC. There are 35 compact binary coalescence candidates identified by at least one of our search algorithms with a probability of astrophysical origin p astro> 0.5. Of these, 18 were previously reported as low-latency public alerts, and 17 are reported here for the first time. Based upon estimates for the component masses, our O3b candidates with p astro> 0.5 are consistent with gravitational-wave signals from binary black holes or neutron-star–black-hole binaries, and we identify …

Authors

Richard Abbott,TD Abbott,F Acernese,K Ackley,C Adams,N Adhikari,RX Adhikari,VB Adya,C Affeldt,D Agarwal,M Agathos,Kazuhiro Agatsuma,N Aggarwal,OD Aguiar,L Aiello,A Ain,P Ajith,S Akcay,T Akutsu,S Albanesi,A Allocca,PA Altin,A Amato,C Anand,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Ando,T Andrade,N Andres,T Andrić,SV Angelova,S Ansoldi,JM Antelis,S Antier,S Appert,Koji Arai,Koya Arai,Y Arai,S Araki,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,M Arogeti,SM Aronson,KG Arun,H Asada,Y Asali,G Ashton,Y Aso,M Assiduo,SM Aston,P Astone,F Aubin,C Austin,S Babak,F Badaracco,MKM Bader,C Badger,S Bae,Y Bae,AM Baer,S Bagnasco,Y Bai,L Baiotti,J Baird,R Bajpai,M Ball,G Ballardin,SW Ballmer,A Balsamo,G Baltus,S Banagiri,D Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,R Bassiri,A Basti,M Bawaj,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,M Bejger,I Belahcene,V Benedetto,D Beniwal,TF Bennett,JD Bentley,M BenYaala,F Bergamin,BK Berger,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare,U Bhardwaj,D Bhattacharjee,S Bhaumik,IA Bilenko,G Billingsley,S Bini,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,M-A Bizouard,JK Blackburn,CD Blair,DG Blair,RM Blair,F Bobba,N Bode,M Boer,G Bogaert,M Boldrini,LD Bonavena,F Bondu,E Bonilla,R Bonnand,P Booker,BA Boom,R Bork,V Boschi,N Bose,S Bose,V Bossilkov

Journal

Physical Review X

Published Date

2023/12/4

Professor FAQs

What is Robert L. Byer's h-index at Stanford University?

The h-index of Robert L. Byer has been 90 since 2020 and 164 in total.

What are Robert L. Byer's research interests?

The research interests of Robert L. Byer are: optics, nonlinear optics, lasers, laser accelerators

What is Robert L. Byer's total number of citations?

Robert L. Byer has 145,541 citations in total.

What are the co-authors of Robert L. Byer?

The co-authors of Robert L. Byer are Yoshihisa Yamamoto, James S. Harris, Jr., Olav Solgaard, Robert Feigelson, Konstantin Vodopyanov, Alireza Marandi.

Co-Authors

H-index: 123
Yoshihisa Yamamoto

Yoshihisa Yamamoto

Stanford University

H-index: 113
James S. Harris, Jr.

James S. Harris, Jr.

Stanford University

H-index: 65
Olav Solgaard

Olav Solgaard

Stanford University

H-index: 59
Robert Feigelson

Robert Feigelson

Stanford University

H-index: 57
Konstantin Vodopyanov

Konstantin Vodopyanov

University of Central Florida

H-index: 40
Alireza Marandi

Alireza Marandi

California Institute of Technology

academic-engine

Useful Links