Fuquan Wang

Fuquan Wang

University of Wisconsin-Madison

H-index: 294

North America-United States

Professor Information

University

University of Wisconsin-Madison

Position

___

Citations(all)

440964

Citations(since 2020)

246672

Cited By

148396

hIndex(all)

294

hIndex(since 2020)

205

i10Index(all)

1934

i10Index(since 2020)

1786

Email

University Profile Page

University of Wisconsin-Madison

Research & Interests List

Particle Physics

Top articles of Fuquan Wang

The present and future of QCD

This White Paper presents an overview of the current status and future perspective of QCD research, based on the community inputs and scientific conclusions from the 2022 Hot and Cold QCD Town Meeting. We present the progress made in the last decade toward a deep understanding of both the fundamental structure of the sub-atomic matter of nucleon and nucleus in cold QCD, and the hot QCD matter in heavy ion collisions. We identify key questions of QCD research and plausible paths to obtaining answers to those questions in the near future, hence defining priorities of our research over the coming decades.

Authors

P Achenbach,D Adhikari,A Afanasev,F Afzal,CA Aidala,A Al-Bataineh,DK Almaalol,M Amaryan,D Androić,WR Armstrong,M Arratia,J Arrington,A Asaturyan,EC Aschenauer,H Atac,H Avakian,T Averett,C Ayerbe Gayoso,X Bai,KN Barish,N Barnea,G Basar,M Battaglieri,AA Baty,I Bautista,A Bazilevsky,C Beattie,SC Behera,V Bellini,R Bellwied,JF Benesch,F Benmokhtar,CA Bernardes,JC Bernauer,H Bhatt,S Bhatta,M Boer,TJ Boettcher,SA Bogacz,HJ Bossi,JD Brandenburg,EJ Brash,RA Briceño,WJ Briscoe,SJ Brodsky,DA Brown,VD Burkert,H Caines,IA Cali,A Camsonne,DS Carman,J Caylor,DS Cerci,S Cerci,M Chamizo Llatas,S Chatterjee,JP Chen,Y Chen,Y-C Chen,Y-T Chien,P-C Chou,X Chu,E Chudakov,E Cline,IC Cloët,PL Cole,ME Connors,M Constantinou,W Cosyn,S Covrig Dusa,R Cruz-Torres,U d'Alesio,C da Silva,Z Davoudi,CT Dean,DJ Dean,M Demarteau,A Deshpande,W Detmold,A Deur,BR Devkota,S Dhital,M Diefenthaler,S Dobbs,M Döring,X Dong,R Dotel,KA Dow,EJ Downie,JL Drachenberg,A Dumitru,JC Dunlop,R Dupre,JM Durham,D Dutta,RG Edwards,RJ Ehlers,L El Fassi,M Elaasar,L Elouadrhiri,M Engelhardt,R Ent,S Esumi,O Evdokimov,O Eyser,C Fanelli,R Fatemi,IP Fernando,FA Flor,N Fomin,AD Frawley,T Frederico,RJ Fries,C Gal,BR Gamage,L Gamberg,H Gao,D Gaskell,F Geurts,Y Ghandilyan,N Ghimire,R Gilman,C Gleason,K Gnanvo,RW Gothe,SV Greene,HW Grießhammer,SK Grossberndt,B Grube,DC Hackett,TJ Hague,H Hakobyan,J-O Hansen,Y Hatta,M Hattawy,LB Havener,O Hen,W Henry,DW Higinbotham,TJ Hobbs,AM Hodges,T Holmstrom,B Hong,T Horn,CR Howell,HZ Huang,M Huang,S Huang,GM Huber,CE Hyde

Journal

Nuclear Physics A

Published Date

2024/4/15

Search for quantum black hole production in lepton+ jet final states using proton-proton collisions at s= 13 TeV with the ATLAS detector

A search for quantum black holes in electron+ jet and muon+ jet invariant mass spectra is performed with 140 fb− 1 of data collected by the ATLAS detector in proton-proton collisions at s= 13 TeV at the Large Hadron Collider. The observed invariant mass spectrum of lepton+ jet pairs is consistent with Standard Model expectations. Upper limits are set at 95% confidence level on the production cross section times branching fractions for quantum black holes decaying into a lepton and a quark in a search region with invariant mass above 2.0 TeV. The resulting quantum black hole lower mass threshold limit is 9.2 TeV in the Arkani-Hamed-Dimopoulos-Dvali model, and 6.8 TeV in the Randall-Sundrum model.

Authors

G Aad,B Abbott,DC Abbott,A Abed Abud,K Abeling,DK Abhayasinghe,SH Abidi,OS AbouZeid,NL Abraham,H Abramowicz,H Abreu,Y Abulaiti,BS Acharya,B Achkar,L Adam,C Adam Bourdarios,L Adamczyk,L Adamek,J Adelman,M Adersberger,A Adiguzel,S Adorni,T Adye,AA Affolder,Y Afik,C Agapopoulou,MN Agaras,A Aggarwal,C Agheorghiesei,JA Aguilar-Saavedra,A Ahmad,F Ahmadov,WS Ahmed,X Ai,G Aielli,S Akatsuka,M Akbiyik,TPA Åkesson,E Akilli,AV Akimov,K Al Khoury,GL Alberghi,J Albert,MJ Alconada Verzini,S Alderweireldt,M Aleksa,IN Aleksandrov,C Alexa,T Alexopoulos,A Alfonsi,F Alfonsi,M Alhroob,B Ali,S Ali,M Aliev,G Alimonti,C Allaire,BMM Allbrooke,BW Allen,PP Allport,A Aloisio,F Alonso,C Alpigiani,E Alunno Camelia,M Alvarez Estevez,MG Alviggi,Y Amaral Coutinho,A Ambler,L Ambroz,C Amelung,D Amidei,SP Amor Dos Santos,S Amoroso,CS Amrouche,F An,C Anastopoulos,N Andari,T Andeen,JK Anders,SY Andrean,A Andreazza,V Andrei,CR Anelli,S Angelidakis,A Angerami,AV Anisenkov,A Annovi,C Antel,MT Anthony,E Antipov,M Antonelli,DJA Antrim,F Anulli,M Aoki,JA Aparisi Pozo,MA Aparo,L Aperio Bella,N Aranzabal,V Araujo Ferraz,R Araujo Pereira,C Arcangeletti,ATH Arce,FA Arduh,JF Arguin,S Argyropoulos,JH Arling,AJ Armbruster,A Armstrong,O Arnaez,H Arnold,ZP Arrubarrena Tame,G Artoni,H Asada,K Asai,S Asai,T Asawatavonvanich,NA Asbah,EM Asimakopoulou,L Asquith,J Assahsah,K Assamagan,R Astalos,RJ Atkin,M Atkinson,NB Atlay,H Atmani,K Augsten,VA Austrup,G Avolio,MK Ayoub,G Azuelos,H Bachacou,K Bachas,M Backes,F Backman,P Bagnaia,H Bahrasemani,AJ Bailey,VR Bailey,JT Baines,C Bakalis,OK Baker,PJ Bakker,E Bakos,D Bakshi Gupta,S Balaji,R Balasubramanian,EM Baldin,P Balek,F Balli

Journal

Physical Review D

Published Date

2024/2/27

New constraints on ultraheavy dark matter from the LZ experiment

Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/ to a few TeV/. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a re-analysis of the first science run (SR1) of the LZ experiment, with an exposure of tonneyear, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 10 GeV/.

Authors

J Aalbers,DS Akerib,AK Al Musalhi,CS Amarasinghe,A Ames,TJ Anderson,N Angelides,HM Araújo,JE Armstrong,M Arthurs,A Baker,S Balashov,J Bang,JW Bargemann,A Baxter,K Beattie,T Benson,A Bhatti,A Biekert,TP Biesiadzinski,HJ Birch,E Bishop,GM Blockinger,B Boxer,CAJ Brew,P Brás,S Burdin,M Buuck,MC Carmona-Benitez,M Carter,A Chawla,H Chen,JJ Cherwinka,NI Chott,MV Converse,A Cottle,G Cox,D Curran,CE Dahl,A David,J Delgaudio,S Dey,L de Viveiros,C Ding,JEY Dobson,E Druszkiewicz,SR Eriksen,A Fan,NM Fearon,S Fiorucci,H Flaecher,ED Fraser,TMA Fruth,RJ Gaitskell,A Geffre,J Genovesi,C Ghag,R Gibbons,S Gokhale,J Green,MGD van der Grinten,CR Hall,S Han,E Hartigan-O'Connor,SJ Haselschwardt,SA Hertel,G Heuermann,GJ Homenides,M Horn,DQ Huang,D Hunt,CM Ignarra,E Jacquet,RS James,J Johnson,AC Kaboth,AC Kamaha,D Khaitan,A Khazov,I Khurana,J Kim,J Kingston,R Kirk,D Kodroff,L Korley,EV Korolkova,H Kraus,S Kravitz,L Kreczko,B Krikler,VA Kudryavtsev,J Lee,DS Leonard,KT Lesko,C Levy,J Lin,A Lindote,R Linehan,WH Lippincott,MI Lopes,E Lopez Asamar,W Lorenzon,C Lu,S Luitz,PA Majewski,A Manalaysay,RL Mannino,C Maupin,ME McCarthy,G McDowell,DN McKinsey,J McLaughlin,R McMonigle,EH Miller,E Mizrachi,A Monte,ME Monzani,JD Mendoza,E Morrison,BJ Mount,M Murdy,A St J Murphy,A Naylor,C Nedlik,HN Nelson,F Neves,A Nguyen,JA Nikoleyczik,I Olcina,KC Oliver-Mallory,J Orpwood,KJ Palladino,J Palmer,NJ Pannifer,N Parveen,SJ Patton,B Penning,G Pereira,E Perry,T Pershing,A Piepke,Y Qie,J Reichenbacher,CA Rhyne,Q Riffard,GRC Rischbieter,HS Riyat,R Rosero,T Rushton,D Rynders

Journal

arXiv preprint arXiv:2402.08865

Published Date

2024/2/14

First measurement of the yield of He isotopes produced in liquid scintillator by cosmic-ray muons at Daya Bay

Daya Bay presents the first measurement of cosmogenic He isotope production in liquid scintillator, using an innovative method for identifying cascade decays of He and its child isotope, Li. We also measure the production yield of Li isotopes using well-established methodology. The results, in units of 10gcm, are 0.3070.042, 0.3410.040, and 0.5460.076 for He, and 6.730.73, 6.750.70, and 13.740.82 for Li at average muon energies of 63.9~GeV, 64.7~GeV, and 143.0~GeV, respectively. The measured production rate of He isotopes is more than an order of magnitude lower than any other measurement of cosmogenic isotope production. It replaces the results of previous attempts to determine the ratio of He to Li production that yielded a wide range of limits from 0 to 30\%. The results provide future liquid-scintillator-based experiments with improved ability to predict cosmogenic backgrounds.

Authors

FP An,WD Bai,AB Balantekin,M Bishai,S Blyth,GF Cao,J Cao,JF Chang,Y Chang,HS Chen,HY Chen,SM Chen,Y Chen,YX Chen,ZY Chen,J Cheng,YC Cheng,ZK Cheng,JJ Cherwinka,MC Chu,JP Cummings,O Dalager,FS Deng,XY Ding,YY Ding,MV Diwan,T Dohnal,D Dolzhikov,J Dove,KV Dugas,HY Duyang,DA Dwyer,JP Gallo,M Gonchar,GH Gong,H Gong,WQ Gu,JY Guo,L Guo,XH Guo,YH Guo,Z Guo,RW Hackenburg,Y Han,S Hans,M He,KM Heeger,YK Heng,YK Hor,YB Hsiung,BZ Hu,JR Hu,T Hu,ZJ Hu,HX Huang,JH Huang,XT Huang,YB Huang,P Huber,DE Jaffe,KL Jen,XL Ji,XP Ji,RA Johnson,D Jones,L Kang,SH Kettell,S Kohn,M Kramer,TJ Langford,J Lee,JHC Lee,RT Lei,R Leitner,JKC Leung,F Li,HL Li,JJ Li,QJ Li,RH Li,S Li,SC Li,WD Li,XN Li,XQ Li,YF Li,ZB Li,H Liang,CJ Lin,GL Lin,S Lin,JJ Ling,JM Link,L Littenberg,BR Littlejohn,JC Liu,JL Liu,JX Liu,C Lu,HQ Lu,KB Luk,BZ Ma,XB Ma,XY Ma,YQ Ma,RC Mandujano,C Marshall,KT McDonald,RD McKeown,Y Meng,J Napolitano,D Naumov,E Naumova,TMT Nguyen,JP Ochoa-Ricoux,A Olshevskiy,J Park,S Patton,JC Peng,CSJ Pun,FZ Qi,M Qi,X Qian,N Raper,J Ren,C Morales Reveco,R Rosero,B Roskovec,XC Ruan,B Russell,H Steiner,JL Sun,T Tmej,W-H Tse,CE Tull,YC Tung,B Viren,V Vorobel,CH Wang,J Wang,M Wang,NY Wang,RG Wang,W Wang,X Wang,YF Wang,Z Wang,ZM Wang,HY Wei,LH Wei

Journal

arXiv preprint arXiv:2402.05383

Published Date

2024/2/8

Real-time monitoring for the next core-collapse supernova in JUNO

The core-collapse supernova (CCSN) is considered one of the most energetic astrophysical events, accompanying the death of a massive star. A burst of neutrinos of tens of MeV energies plays important roles during its explosion and carries away most of the released gravitational binding energy of around 1053 erg. This overall picture is essentially supported by the detection of sparse neutrinos from SN 1987A in the Large Magellanic Cloud [1–3]. For the next Galactic or nearby extra-galactic CCSN, more detailed time and energy spectra information of neutrinos from the CCSN are highly desired to describe and model the complex physical processes of the explosion. Such more detailed picture will be achieved by different types of modern neutrino detectors with lower energy threshold, larger target masses and complementary designs. Moreover, the first detection of neutrinos emitted prior to the core collapse (pre …

Authors

Angel Abusleme,Thomas Adam,Shakeel Ahmad,Rizwan Ahmed,Sebastiano Aiello,Muhammad Akram,Abid Aleem,Fengpeng An,Qi An,Giuseppe Andronico,Nikolay Anfimov,Vito Antonelli,Tatiana Antoshkina,Burin Asavapibhop,João Pedro Athayde Marcondes de André,Didier Auguste,Weidong Bai,Nikita Balashov,Wander Baldini,Andrea Barresi,Davide Basilico,Eric Baussan,Marco Bellato,Marco Beretta,Antonio Bergnoli,Daniel Bick,Lukas Bieger,Svetlana Biktemerova,Thilo Birkenfeld,Iwan Morton-Blake,David Blum,Simon Blyth,Anastasia Bolshakova,Mathieu Bongrand,Clément Bordereau,Dominique Breton,Augusto Brigatti,Riccardo Brugnera,Riccardo Bruno,Antonio Budano,Jose Busto,Anatael Cabrera,Barbara Caccianiga,Hao Cai,Xiao Cai,Yanke Cai,Zhiyan Cai,Stéphane Callier,Antonio Cammi,Agustin Campeny,Chuanya Cao,Guofu Cao,Jun Cao,Rossella Caruso,Cédric Cerna,Vanessa Cerrone,Chi Chan,Jinfan Chang,Yun Chang,Auttakit Chatrabhuti,Chao Chen,Guoming Chen,Pingping Chen,Shaomin Chen,Yixue Chen,Yu Chen,Zhangming Chen,Zhiyuan Chen,Zikang Chen,Jie Cheng,Yaping Cheng,Yu Chin Cheng,Alexander Chepurnov,Alexey Chetverikov,Davide Chiesa,Pietro Chimenti,Yen-Ting Chin,Ziliang Chu,Artem Chukanov,Gérard Claverie,Catia Clementi,Barbara Clerbaux,Marta Colomer Molla,Selma Conforti Di Lorenzo,Alberto Coppi,Daniele Corti,Simon Csakli,Flavio Dal Corso,Olivia Dalager,Jaydeep Datta,Christophe De La Taille,Zhi Deng,Ziyan Deng,Xiaoyu Ding,Xuefeng Ding,Yayun Ding,Bayu Dirgantara,Carsten Dittrich,Sergey Dmitrievsky,Tadeas Dohnal,Dmitry Dolzhikov,Georgy Donchenko,Jianmeng Dong,Evgeny Doroshkevich,Wei Dou,Marcos Dracos,Frédéric Druillole,Ran Du,Shuxian Du,Katherine Dugas,Stefano Dusini,Hongyue Duyang,Jessica Eck,Timo Enqvist,Andrea Fabbri,Ulrike Fahrendholz,Lei Fan,Jian Fang,Wenxing Fang,Marco Fargetta,Dmitry Fedoseev,Zhengyong Fei,Li-Cheng Feng,Qichun Feng,Federico Ferraro,Amélie Fournier,Haonan Gan,Feng Gao,Alberto Garfagnini,Arsenii Gavrikov,Marco Giammarchi,Nunzio Giudice,Maxim Gonchar,Guanghua Gong,Hui Gong,Yuri Gornushkin,Alexandre Göttel,Marco Grassi,Maxim Gromov,Vasily Gromov,Minghao Gu,Xiaofei Gu,Yu Gu,Mengyun Guan,Yuduo Guan,Nunzio Guardone,Cong Guo,Wanlei Guo,Xinheng Guo,Caren Hagner

Journal

Journal of Cosmology and Astroparticle Physics

Published Date

2024/1/25

Charged-current non-standard neutrino interactions at Daya Bay

The full data set of the Daya Bay reactor neutrino experiment is used to probe the effect of the charged current non-standard interactions (CC-NSI) on neutrino oscillation experiments. Two different approaches are applied and constraints on the corresponding CC-NSI parameters are obtained with the neutrino flux taken from the Huber-Mueller model with a uncertainty. Both approaches are performed with the analytical expressions of the effective survival probability valid up to all orders in the CC-NSI parameters. For the quantum mechanics-based approach (QM-NSI), the constraints on the CC-NSI parameters and are extracted with and without the assumption that the effects of the new physics are the same in the production and detection processes, respectively. The approach based on the effective field theory (EFT-NSI) deals with four types of CC-NSI represented by the parameters . For both approaches, the results for the CC-NSI parameters are shown for cases with various fixed values of the CC-NSI and the Dirac CP-violating phases, and when they are allowed to vary freely. We find that constraints on the QM-NSI parameters and from the Daya Bay experiment alone can reach the order for the former and for the latter, while for EFT-NSI parameters , we obtain for both cases.

Authors

FP An,WD Bai,AB Balantekin,M Bishai,S Blyth,GF Cao,J Cao,JF Chang,Y Chang,HS Chen,HY Chen,SM Chen,Y Chen,YX Chen,ZY Chen,J Cheng,YC Cheng,ZK Cheng,JJ Cherwinka,MC Chu,JP Cummings,O Dalager,FS Deng,XY Ding,YY Ding,MV Diwan,T Dohnal,D Dolzhikov,J Dove,KV Dugas,HY Duyang,DA Dwyer,JP Gallo,M Gonchar,GH Gong,H Gong,WQ Gu,JY Guo,L Guo,XH Guo,YH Guo,Z Guo,RW Hackenburg,Y Han,S Hans,M He,KM Heeger,YK Heng,YK Hor,YB Hsiung,BZ Hu,JR Hu,T Hu,ZJ Hu,HX Huang,JH Huang,XT Huang,YB Huang,P Huber,DE Jaffe,KL Jen,XL Ji,XP Ji,RA Johnson,D Jones,L Kang,SH Kettell,S Kohn,M Kramer,TJ Langford,J Lee,JHC Lee,RT Lei,R Leitner,JKC Leung,F Li,HL Li,JJ Li,QJ Li,RH Li,S Li,SC Li,WD Li,XN Li,XQ Li,YF Li,ZB Li,H Liang,CJ Lin,GL Lin,S Lin,JJ Ling,JM Link,L Littenberg,BR Littlejohn,JC Liu,JL Liu,JX Liu,C Lu,HQ Lu,KB Luk,BZ Ma,XB Ma,XY Ma,YQ Ma,RC Mandujano,C Marshall,KT McDonald,RD McKeown,Y Meng,J Napolitano,D Naumov,E Naumova,TMT Nguyen,JP Ochoa-Ricoux,A Olshevskiy,J Park,S Patton,JC Peng,CSJ Pun,FZ Qi,M Qi,X Qian,N Raper,J Ren,C Morales Reveco,R Rosero,B Roskovec,XC Ruan,B Russell,H Steiner,JL Sun,T Tmej,W-H Tse,CE Tull,YC Tung,B Viren,V Vorobel,CH Wang,J Wang,M Wang,NY Wang,RG Wang,W Wang,X Wang,YF Wang,Z Wang,ZM Wang,HY Wei,LH Wei

Journal

arXiv preprint arXiv:2401.02901

Published Date

2024/1/5

Strange hadron collectivity in pPb and PbPb collisions

The collective behavior of and strange hadrons is studied by measuring the elliptic azimuthal anisotropy (v 2) using the scalar-product and multiparticle correlation methods. Proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy= 8. 16 TeV and lead-lead (PbPb) collisions at= 5. 02 TeV collected by the CMS experiment at the LHC are investigated. Nonflow effects in the pPb collisions are studied by using a subevent cumulant analysis and by excluding events where a jet with transverse momentum greater than 20 GeV is present. The strange hadron v 2 values extracted in pPb collisions via the four-and six-particle correlation method are found to be nearly identical, suggesting the collective behavior. Comparisons of the pPb and PbPb results for both strange hadrons and charged particles illustrate how event-by-event flow fluctuations depend on the system size.

Authors

Armen Tumasyan,Wolfgang Adam,Janik Walter Andrejkovic,Thomas Bergauer,Suman Chatterjee,Marko Dragicevic,Alberto Escalante Del Valle,Rudolf Fruehwirth,Manfred Jeitler,Natascha Krammer,Lukas Lechner,Dietrich Liko,Ivan Mikulec,Peter Paulitsch,Florian Michael Pitters,Jochen Schieck,Robert Schöfbeck,Dennis Schwarz,Sebastian Templ,Wolfgang Waltenberger,C-E Wulz,Mohamed Rashad Darwish,Eddi A De Wolf,Tahys Janssen,Tomas Kello,Aleksandra Lelek,H Rejeb Sfar,Pierre Van Mechelen,Senne Van Putte,F Blekman,ES Bols,J D’Hondt,M Delcourt,H El Faham,S Lowette,S Moortgat,A Morton,D Müller,AR Sahasransu,S Tavernier,W Van Doninck,P Van Mulders,D Beghin,B Bilin,B Clerbaux,G De Lentdecker,L Favart,A Grebenyuk,AK Kalsi,K Lee,M Mahdavikhorrami,I Makarenko,L Moureaux,L Pétré,A Popov,N Postiau,E Starling,L Thomas,M Vanden Bemden,C Vander Velde,Pascal Vanlaer,Tom Cornelis,Didar Dobur,Joscha Knolle,Luka Lambrecht,Gianny Mestdach,Marek Niedziela,Christos Roskas,Amrutha Samalan,Kirill Skovpen,Michael Tytgat,Basile Vermassen,Martina Vit,Liam Wezenbeek,Anna Benecke,Agni Bethani,Giacomo Bruno,F Bury,Claudio Caputo,Pieter David,Christophe Delaere,Izzeddin Suat Donertas,Andrea Giammanco,Khawla Jaffel,Sa Jain,V Lemaitre,K Mondal,J Prisciandaro,A Taliercio,M Teklishyn,TT Tran,P Vischia,S Wertz,GA Alves,C Hensel,A Moraes,WL Aldá Júnior,M Alves Gallo Pereira,Barroso Ferreira Filho,H Brandao Malbouisson,W Carvalho,J Chinellato,EM Da Costa,GG Da Silveira,D De Jesus Damiao,S Fonseca De Souza,C Mora Herrera,Kevin Mota Amarilo,L Mundim,H Nogima,P Rebello Teles,A Santoro,SM Silva Do Amaral,A Sznajder,M Thiel,F Torres Da Silva De Araujo,A Vilela Pereira,CA Bernardes,L Calligaris,TR Fernandez Perez Tomei,EM Gregores,DS Lemos,PG Mercadante,SF Novaes,Sandra S Padula,A Aleksandrov,G Antchev,R Hadjiiska,P Iaydjiev,M Misheva,M Rodozov,M Shopova,G Sultanov,A Dimitrov,T Ivanov,L Litov,B Pavlov,P Petkov,A Petrov,T Cheng,T Javaid,M Mittal,L Yuan,M Ahmad,G Bauer,C Dozen,Z Hu,J Martins,Y Wang,K Yi

Journal

Journal of High Energy Physics

Published Date

2023/5

The JUNO experiment Top Tracker

The main task of the Top Tracker detector of the neutrino reactor experiment Jiangmen Underground Neutrino Observatory (JUNO) is to reconstruct and extrapolate atmospheric muon tracks down to the central detector. This muon tracker will help to evaluate the contribution of the cosmogenic background to the signal. The Top Tracker is located above JUNO’s water Cherenkov Detector and Central Detector, covering about 60% of the surface above them. The JUNO Top Tracker is constituted by the decommissioned OPERA experiment Target Tracker modules. The technology used consists in walls of two planes of plastic scintillator strips, one per transverse direction. Wavelength shifting fibres collect the light signal emitted by the scintillator strips and guide it to both ends where it is read by multianode photomultiplier tubes. Compared to the OPERA Target Tracker, the JUNO Top Tracker uses new electronics able …

Authors

Angel Abusleme,Thomas Adam,Shakeel Ahmad,Rizwan Ahmed,Sebastiano Aiello,Muhammad Akram,Abid Aleem,Tsagkarakis Alexandros,Fengpeng An,Qi An,Giuseppe Andronico,Nikolay Anfimov,Vito Antonelli,Tatiana Antoshkina,Burin Asavapibhop,João Pedro Athayde Marcondes de André,Didier Auguste,Weidong Bai,Nikita Balashov,Wander Baldini,Andrea Barresi,Davide Basilico,Eric Baussan,Marco Bellato,Marco Beretta,Antonio Bergnoli,Daniel Bick,Thilo Birkenfeld,Sylvie Blin,David Blum,Simon Blyth,Anastasia Bolshakova,Mathieu Bongrand,Clément Bordereau,Dominique Breton,Augusto Brigatti,Riccardo Brugnera,Riccardo Bruno,Antonio Budano,Jose Busto,Anatael Cabrera,Barbara Caccianiga,Hao Cai,Xiao Cai,Yanke Cai,Zhiyan Cai,Stéphane Callier,Antonio Cammi,Agustin Campeny,Chuanya Cao,Guofu Cao,Jun Cao,Rossella Caruso,Cédric Cerna,Vanessa Cerrone,Chi Chan,Jinfan Chang,Yun Chang,Chao Chen,Guoming Chen,Pingping Chen,Shaomin Chen,Yixue Chen,Yu Chen,Zhiyuan Chen,Zikang Chen,Jie Cheng,Yaping Cheng,Yu Chin Cheng,Alexander Chepurnov,Alexey Chetverikov,Davide Chiesa,Pietro Chimenti,Ziliang Chu,Artem Chukanov,Gérard Claverie,Catia Clementi,Barbara Clerbaux,Marta Colomer Molla,Selma Conforti Di Lorenzo,Alberto Coppi,Daniele Corti,Flavio Dal Corso,Olivia Dalager,Christophe De La Taille,Zhi Deng,Ziyan Deng,Wilfried Depnering,Marco Diaz,Xuefeng Ding,Yayun Ding,Bayu Dirgantara,Sergey Dmitrievsky,Tadeas Dohnal,Dmitry Dolzhikov,Georgy Donchenko,Jianmeng Dong,Evgeny Doroshkevich,Wei Dou,Marcos Dracos,Olivier Drapier,Frédéric Druillole,Ran Du,Shuxian Du,Katherine Dugas,Stefano Dusini,Hongyue Duyang,Jessica Eck,Timo Enqvist,Andrea Fabbri,Ulrike Fahrendholz,Lei Fan,Jian Fang,Wenxing Fang,Marco Fargetta,Dmitry Fedoseev,Zhengyong Fei,Giulietto Felici,Li-Cheng Feng,Qichun Feng,Federico Ferraro,Amélie Fournier,Haonan Gan,Feng Gao,Alberto Garfagnini,Arsenii Gavrikov,Vladimir Gerasimov,Marco Giammarchi,Nunzio Giudice,Maxim Gonchar,Guanghua Gong,Hui Gong,Yuri Gornushkin,Alexandre Göttel,Marco Grassi,Maxim Gromov,Vasily Gromov,Minghao Gu,Xiaofei Gu,Yu Gu,Mengyun Guan,Yuduo Guan,Nunzio Guardone,Cong Guo,Wanlei Guo,Xinheng Guo,Yuhang Guo,Semen Gursky,Caren Hagner,Ran Han

Journal

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

Published Date

2023/12/1

Professor FAQs

What is Fuquan Wang's h-index at University of Wisconsin-Madison?

The h-index of Fuquan Wang has been 205 since 2020 and 294 in total.

What are Fuquan Wang's research interests?

The research interests of Fuquan Wang are: Particle Physics

What is Fuquan Wang's total number of citations?

Fuquan Wang has 440,964 citations in total.

academic-engine

Useful Links