New constraints on ultraheavy dark matter from the LZ experiment

arXiv preprint arXiv:2402.08865

Published On 2024/2/14

Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/ to a few TeV/. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a re-analysis of the first science run (SR1) of the LZ experiment, with an exposure of tonneyear, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 10 GeV/.

Journal

arXiv preprint arXiv:2402.08865

Authors

Fuquan Wang

Fuquan Wang

University of Wisconsin-Madison

H-Index

294

Research Interests

Particle Physics

University Profile Page

Xiaofeng Wang

Xiaofeng Wang

Tsinghua University

H-Index

283

Research Interests

supernova

time-domain astronomy

AGN

University Profile Page

Bjoern Penning

Bjoern Penning

University of Michigan-Dearborn

H-Index

184

Research Interests

particle astrophysics

dark matter

cosmology

phenomenology

University Profile Page

Maria Elena Monzani

Maria Elena Monzani

Stanford University

H-Index

138

Research Interests

High Energy Astrophysics

Direct Dark Matter Detection

University Profile Page

Wolfgang Lorenzon

Wolfgang Lorenzon

University of Michigan-Dearborn

H-Index

70

Research Interests

NP

HEP

Cosmology

University Profile Page

F. L. H. Wolfs

F. L. H. Wolfs

University of Rochester

H-Index

70

Research Interests

Astro-Particle Physics

Dark Matter

Nuclear Physics

University Profile Page

Other Articles from authors

Xin Xiang

Xin Xiang

Brown University

arXiv preprint arXiv:2403.13231

Design, construction, and operation of a 1-ton Water-based Liquid scintillator detector at Brookhaven National Laboratory

Water-based liquid scintillators (WbLS) are attractive neutrino detector materials because they allow us to tune the ratio of the Cherenkov and scintillation signals. Using WbLS large-scale neutrino experiments can benefit from both directional reconstruction and enhanced low-energy efficiency. Furthermore, broadening the science capability of such materials by metal doping may be better suited for water based liquid scintillators. We recently constructed and commissioned a 1-ton WbLS detector with good photosensor coverage and a capable data acquisition system. We intend to use this flexible detector system as a testbed for WbLS R&D. In this paper we give an overview of the 1-ton system and provide some early analysis results.

Xiaofeng Wang

Xiaofeng Wang

Tsinghua University

Search for a CP-odd Higgs boson decaying into a heavy CP-even Higgs boson and a Z boson in the and final states using 140 fb−1 of data collected …

A search for a heavy CP-odd Higgs boson, A, decaying into a Z boson and a heavy CP-even Higgs boson, H, is presented. It uses the full LHC Run 2 dataset of pp collisions at s= 13 TeV collected with the ATLAS detector, corresponding to an integrated luminosity of 140 fb− 1. The search for A→ ZH is performed in the ℓ+ ℓ− tt and ννbb final states and surpasses the reach of previous searches in different final states in the region with mH> 350 GeV and mA> 800 GeV. No significant deviation from the Standard Model expectation is found. Upper limits are placed on the production cross-section times the decay branching ratios. Limits with less model dependence are also presented as functions of the reconstructed m (tt) and m (bb) distributions in the ℓ+ ℓ− tt and ννbb channels, respectively. In addition, the results are interpreted in the context of two-Higgs-doublet models.

Xiaofeng Wang

Xiaofeng Wang

Tsinghua University

Physical Review D

GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run

The second Gravitational-Wave Transient Catalog, GWTC-2, reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15∶ 00 UTC and 1 October 2019 15∶ 00 UTC. Here, we present GWTC-2.1, which reports on a deeper list of candidate events observed over the same period. We analyze the final version of the strain data over this period with improved calibration and better subtraction of excess noise, which has been publicly released. We employ three matched-filter search pipelines for candidate identification, and estimate the probability of astrophysical origin for each candidate event. While GWTC-2 used a false alarm rate threshold of 2 per year, we include in GWTC-2.1, 1201 candidates that pass a false alarm rate threshold of 2 per day. We calculate the source properties of a subset of 44 high-significance candidates that have a …

Chen Ding

Chen Ding

New York University

arXiv preprint arXiv:2404.17666

Constraints On Covariant WIMP-Nucleon Effective Field Theory Interactions from the First Science Run of the LUX-ZEPLIN Experiment

The first science run of the LUX-ZEPLIN (LZ) experiment, a dual-phase xenon time project chamber operating in the Sanford Underground Research Facility in South Dakota, USA, has reported leading limits on spin-independent WIMP-nucleon interactions and interactions described from a non-relativistic effective field theory (NREFT). Using the same 5.5~t fiducial mass and 60 live days of exposure we report on the results of a relativistic extension to the NREFT. We present constraints on couplings from covariant interactions arising from the coupling of vector, axial currents, and electric dipole moments of the nucleon to the magnetic and electric dipole moments of the WIMP which cannot be described by recasting previous results described by an NREFT. Using a profile-likelihood ratio analysis, in an energy region between 0~keV to 270~keV, we report 90% confidence level exclusion limits on the coupling strength of five interactions in both the isoscalar and isovector bases.

Luiz de Viveiros

Luiz de Viveiros

Penn State University

Physical Review C

Cyclotron radiation emission spectroscopy of electrons from tritium decay and 83mKr internal conversion

Project 8 has developed a novel technique, cyclotron radiation emission spectroscopy (CRES), for direct neutrino mass measurements. A CRES-based experiment on the beta spectrum of tritium has been carried out in a small-volume apparatus. We provide a detailed account of the experiment, focusing on systematic effects and analysis techniques. In a Bayesian (frequentist) analysis, we measure the tritium endpoint as 18 553− 19+ 18 (18 548− 19+ 19) eV and set upper limits of 155 (152) eV (90% CL) on the neutrino mass. No background events are observed beyond the endpoint in 82 days of running. We also demonstrate an energy resolution of 1.66±0.19 eV in a resolution-optimized magnetic trap configuration by measuring Kr 83 m 17.8-keV internal-conversion electrons. These measurements establish CRES as a low-background, high-resolution technique with the potential to advance neutrino mass …

Daniel McKinsey

Daniel McKinsey

University of California, Berkeley

arXiv preprint arXiv:2404.17666

Constraints On Covariant WIMP-Nucleon Effective Field Theory Interactions from the First Science Run of the LUX-ZEPLIN Experiment

The first science run of the LUX-ZEPLIN (LZ) experiment, a dual-phase xenon time project chamber operating in the Sanford Underground Research Facility in South Dakota, USA, has reported leading limits on spin-independent WIMP-nucleon interactions and interactions described from a non-relativistic effective field theory (NREFT). Using the same 5.5~t fiducial mass and 60 live days of exposure we report on the results of a relativistic extension to the NREFT. We present constraints on couplings from covariant interactions arising from the coupling of vector, axial currents, and electric dipole moments of the nucleon to the magnetic and electric dipole moments of the WIMP which cannot be described by recasting previous results described by an NREFT. Using a profile-likelihood ratio analysis, in an energy region between 0~keV to 270~keV, we report 90% confidence level exclusion limits on the coupling strength of five interactions in both the isoscalar and isovector bases.

Maria del Carmen Carmona-Benitez

Maria del Carmen Carmona-Benitez

Penn State University

Physical Review C

Cyclotron radiation emission spectroscopy of electrons from tritium decay and 83mKr internal conversion

Project 8 has developed a novel technique, cyclotron radiation emission spectroscopy (CRES), for direct neutrino mass measurements. A CRES-based experiment on the beta spectrum of tritium has been carried out in a small-volume apparatus. We provide a detailed account of the experiment, focusing on systematic effects and analysis techniques. In a Bayesian (frequentist) analysis, we measure the tritium endpoint as 18 553− 19+ 18 (18 548− 19+ 19) eV and set upper limits of 155 (152) eV (90% CL) on the neutrino mass. No background events are observed beyond the endpoint in 82 days of running. We also demonstrate an energy resolution of 1.66±0.19 eV in a resolution-optimized magnetic trap configuration by measuring Kr 83 m 17.8-keV internal-conversion electrons. These measurements establish CRES as a low-background, high-resolution technique with the potential to advance neutrino mass …

Wolfgang Lorenzon

Wolfgang Lorenzon

University of Michigan-Dearborn

The European Physical Journal A

Instrumental uncertainties in radiative corrections for the MUSE experiment

The MUSE experiment at the Paul Scherrer Institute is measuring elastic lepton-proton scattering cross sections in a four-momentum transfer range from Q2 of approximately 0.002–0.08 GeV2 using positively and negatively charged electrons and muons. The extraction of the Born cross sections from the experimental data requires radiative corrections. Estimates of the instrumental uncertainties in those corrections have been made using the ESEPP event generator. The results depend in particular on the minimum lepton momentum that contributes to the experimental cross section and the fraction of events with hard initial-state radiation that is detected in the MUSE calorimeter and is excluded from the data. These results show that the angular-dependent instrumental uncertainties in radiative corrections to the electron cross section are less than 0.4% and are negligible for the muon cross section.

Chamkaur Ghag

Chamkaur Ghag

University College London

arXiv preprint arXiv:2404.17666

Constraints On Covariant WIMP-Nucleon Effective Field Theory Interactions from the First Science Run of the LUX-ZEPLIN Experiment

The first science run of the LUX-ZEPLIN (LZ) experiment, a dual-phase xenon time project chamber operating in the Sanford Underground Research Facility in South Dakota, USA, has reported leading limits on spin-independent WIMP-nucleon interactions and interactions described from a non-relativistic effective field theory (NREFT). Using the same 5.5~t fiducial mass and 60 live days of exposure we report on the results of a relativistic extension to the NREFT. We present constraints on couplings from covariant interactions arising from the coupling of vector, axial currents, and electric dipole moments of the nucleon to the magnetic and electric dipole moments of the WIMP which cannot be described by recasting previous results described by an NREFT. Using a profile-likelihood ratio analysis, in an energy region between 0~keV to 270~keV, we report 90% confidence level exclusion limits on the coupling strength of five interactions in both the isoscalar and isovector bases.

Xiaofeng Wang

Xiaofeng Wang

Tsinghua University

arXiv preprint arXiv:2402.05383

First measurement of the yield of He isotopes produced in liquid scintillator by cosmic-ray muons at Daya Bay

Daya Bay presents the first measurement of cosmogenic He isotope production in liquid scintillator, using an innovative method for identifying cascade decays of He and its child isotope, Li. We also measure the production yield of Li isotopes using well-established methodology. The results, in units of 10gcm, are 0.3070.042, 0.3410.040, and 0.5460.076 for He, and 6.730.73, 6.750.70, and 13.740.82 for Li at average muon energies of 63.9~GeV, 64.7~GeV, and 143.0~GeV, respectively. The measured production rate of He isotopes is more than an order of magnitude lower than any other measurement of cosmogenic isotope production. It replaces the results of previous attempts to determine the ratio of He to Li production that yielded a wide range of limits from 0 to 30\%. The results provide future liquid-scintillator-based experiments with improved ability to predict cosmogenic backgrounds.

Xiaofeng Wang

Xiaofeng Wang

Tsinghua University

EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS

Study of decays at  = 8 TeV with the ATLAS detector

This paper presents a study of Z→ llγ decays with the ATLAS detector at the Large Hadron Collider. The analysis uses a proton–proton data sample corresponding to an integrated luminosity of 20.2 fb− 1 collected at a centre-of mass energy√ s= 8 TeV. Integrated fiducial cross-sections together with normalised differential fiducial cross-sections, sensitive to the kinematics of final-state QED radiation, are obtained. The results are found to be in agreement with state of-the-art predictions for final-state QED radiation. First measurements of Z→ llγ γ decays are also reported

Xiaofeng Wang

Xiaofeng Wang

Tsinghua University

Journal of Cosmology and Astroparticle Physics

Real-time monitoring for the next core-collapse supernova in JUNO

The core-collapse supernova (CCSN) is considered one of the most energetic astrophysical events, accompanying the death of a massive star. A burst of neutrinos of tens of MeV energies plays important roles during its explosion and carries away most of the released gravitational binding energy of around 1053 erg. This overall picture is essentially supported by the detection of sparse neutrinos from SN 1987A in the Large Magellanic Cloud [1–3]. For the next Galactic or nearby extra-galactic CCSN, more detailed time and energy spectra information of neutrinos from the CCSN are highly desired to describe and model the complex physical processes of the explosion. Such more detailed picture will be achieved by different types of modern neutrino detectors with lower energy threshold, larger target masses and complementary designs. Moreover, the first detection of neutrinos emitted prior to the core collapse (pre …

Bjoern Penning

Bjoern Penning

University of Michigan-Dearborn

arXiv preprint arXiv:2404.17666

Constraints On Covariant WIMP-Nucleon Effective Field Theory Interactions from the First Science Run of the LUX-ZEPLIN Experiment

The first science run of the LUX-ZEPLIN (LZ) experiment, a dual-phase xenon time project chamber operating in the Sanford Underground Research Facility in South Dakota, USA, has reported leading limits on spin-independent WIMP-nucleon interactions and interactions described from a non-relativistic effective field theory (NREFT). Using the same 5.5~t fiducial mass and 60 live days of exposure we report on the results of a relativistic extension to the NREFT. We present constraints on couplings from covariant interactions arising from the coupling of vector, axial currents, and electric dipole moments of the nucleon to the magnetic and electric dipole moments of the WIMP which cannot be described by recasting previous results described by an NREFT. Using a profile-likelihood ratio analysis, in an energy region between 0~keV to 270~keV, we report 90% confidence level exclusion limits on the coupling strength of five interactions in both the isoscalar and isovector bases.

Other articles from arXiv preprint arXiv:2402.08865 journal

Xiaofeng Wang

Xiaofeng Wang

Tsinghua University

arXiv preprint arXiv:2402.08865

New constraints on ultraheavy dark matter from the LZ experiment

Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/ to a few TeV/. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a re-analysis of the first science run (SR1) of the LZ experiment, with an exposure of tonneyear, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 10 GeV/.

JuiJen (Ryan) Wang

JuiJen (Ryan) Wang

University of Michigan-Dearborn

arXiv preprint arXiv:2402.08865

New constraints on ultraheavy dark matter from the LZ experiment

Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/ to a few TeV/. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a re-analysis of the first science run (SR1) of the LZ experiment, with an exposure of tonneyear, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 10 GeV/.

Madan Timalsina

Madan Timalsina

South Dakota School of Mines and Technology

arXiv preprint arXiv:2402.08865

New constraints on ultraheavy dark matter from the LZ experiment

Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/ to a few TeV/. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a re-analysis of the first science run (SR1) of the LZ experiment, with an exposure of tonneyear, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 10 GeV/.

F. L. H. Wolfs

F. L. H. Wolfs

University of Rochester

arXiv preprint arXiv:2402.08865

New constraints on ultraheavy dark matter from the LZ experiment

Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/ to a few TeV/. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a re-analysis of the first science run (SR1) of the LZ experiment, with an exposure of tonneyear, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 10 GeV/.

Alissa Monte

Alissa Monte

University of California, Santa Barbara

arXiv preprint arXiv:2402.08865

New constraints on ultraheavy dark matter from the LZ experiment

Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/ to a few TeV/. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a re-analysis of the first science run (SR1) of the LZ experiment, with an exposure of tonneyear, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 10 GeV/.

Xin Xiang

Xin Xiang

Brown University

arXiv preprint arXiv:2402.08865

New constraints on ultraheavy dark matter from the LZ experiment

Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/ to a few TeV/. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a re-analysis of the first science run (SR1) of the LZ experiment, with an exposure of tonneyear, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 10 GeV/.

Maria del Carmen Carmona-Benitez

Maria del Carmen Carmona-Benitez

Penn State University

arXiv preprint arXiv:2402.08865

New constraints on ultraheavy dark matter from the LZ experiment

Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/ to a few TeV/. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a re-analysis of the first science run (SR1) of the LZ experiment, with an exposure of tonneyear, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 10 GeV/.

Chen Ding

Chen Ding

New York University

arXiv preprint arXiv:2402.08865

New constraints on ultraheavy dark matter from the LZ experiment

Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/ to a few TeV/. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a re-analysis of the first science run (SR1) of the LZ experiment, with an exposure of tonneyear, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 10 GeV/.

Luiz de Viveiros

Luiz de Viveiros

Penn State University

arXiv preprint arXiv:2402.08865

New constraints on ultraheavy dark matter from the LZ experiment

Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/ to a few TeV/. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a re-analysis of the first science run (SR1) of the LZ experiment, with an exposure of tonneyear, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 10 GeV/.

Daniel McKinsey

Daniel McKinsey

University of California, Berkeley

arXiv preprint arXiv:2402.08865

New constraints on ultraheavy dark matter from the LZ experiment

Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/ to a few TeV/. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a re-analysis of the first science run (SR1) of the LZ experiment, with an exposure of tonneyear, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 10 GeV/.

Jeonghwa Kim

Jeonghwa Kim

Korea University

arXiv preprint arXiv:2402.08865

New constraints on ultraheavy dark matter from the LZ experiment

Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/ to a few TeV/. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a re-analysis of the first science run (SR1) of the LZ experiment, with an exposure of tonneyear, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 10 GeV/.

Richard Gaitskell

Richard Gaitskell

Brown University

arXiv preprint arXiv:2402.08865

New constraints on ultraheavy dark matter from the LZ experiment

Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/ to a few TeV/. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a re-analysis of the first science run (SR1) of the LZ experiment, with an exposure of tonneyear, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 10 GeV/.

Chamkaur Ghag

Chamkaur Ghag

University College London

arXiv preprint arXiv:2402.08865

New constraints on ultraheavy dark matter from the LZ experiment

Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/ to a few TeV/. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a re-analysis of the first science run (SR1) of the LZ experiment, with an exposure of tonneyear, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 10 GeV/.

Maria Elena Monzani

Maria Elena Monzani

Stanford University

arXiv preprint arXiv:2402.08865

New constraints on ultraheavy dark matter from the LZ experiment

Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/ to a few TeV/. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a re-analysis of the first science run (SR1) of the LZ experiment, with an exposure of tonneyear, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 10 GeV/.

Fuquan Wang

Fuquan Wang

University of Wisconsin-Madison

arXiv preprint arXiv:2402.08865

New constraints on ultraheavy dark matter from the LZ experiment

Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/ to a few TeV/. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a re-analysis of the first science run (SR1) of the LZ experiment, with an exposure of tonneyear, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 10 GeV/.

Eryk Druszkiewicz

Eryk Druszkiewicz

University of Rochester

arXiv preprint arXiv:2402.08865

New constraints on ultraheavy dark matter from the LZ experiment

Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/ to a few TeV/. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a re-analysis of the first science run (SR1) of the LZ experiment, with an exposure of tonneyear, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 10 GeV/.

Andreas Biekert

Andreas Biekert

University of California, Berkeley

arXiv preprint arXiv:2402.08865

New constraints on ultraheavy dark matter from the LZ experiment

Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/ to a few TeV/. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a re-analysis of the first science run (SR1) of the LZ experiment, with an exposure of tonneyear, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 10 GeV/.

Vetri Velan

Vetri Velan

University of California, Berkeley

arXiv preprint arXiv:2402.08865

New constraints on ultraheavy dark matter from the LZ experiment

Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/ to a few TeV/. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a re-analysis of the first science run (SR1) of the LZ experiment, with an exposure of tonneyear, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 10 GeV/.

Bjoern Penning

Bjoern Penning

University of Michigan-Dearborn

arXiv preprint arXiv:2402.08865

New constraints on ultraheavy dark matter from the LZ experiment

Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/ to a few TeV/. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a re-analysis of the first science run (SR1) of the LZ experiment, with an exposure of tonneyear, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 10 GeV/.

Carter Hall

Carter Hall

University of Maryland, Baltimore

arXiv preprint arXiv:2402.08865

New constraints on ultraheavy dark matter from the LZ experiment

Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/ to a few TeV/. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a re-analysis of the first science run (SR1) of the LZ experiment, with an exposure of tonneyear, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 10 GeV/.