Search for Higgs boson decays into a pair of pseudoscalar particles in the final state with the ATLAS detector in collisions at

Physical Review D

Published On 2022/1/11

This paper presents a search for decays of the Higgs boson with a mass of 125 GeV into a pair of new pseudoscalar particles, H→ a a, where one a-boson decays into a b-quark pair and the other into a muon pair. The search uses 139 fb− 1 of proton-proton collision data at a center-of-mass energy of s= 13 TeV recorded between 2015 and 2018 by the ATLAS experiment at the LHC. A narrow dimuon resonance is searched for in the invariant mass spectrum between 16 GeV and 62 GeV. The largest excess of events above the Standard Model backgrounds is observed at a dimuon invariant mass of 52 GeV and corresponds to a local (global) significance of 3.3 σ (1.7 σ). Upper limits at 95% confidence level are placed on the branching ratio of the Higgs boson to the b b μ μ final state, B (H→ a a→ b b μ μ), and are in the range 0.2–4.0× 10− 4, depending on the signal mass hypothesis.

Journal

Physical Review D

Published On

2022/1/11

Volume

105

Issue

1

Page

012006

Authors

Silvia Behar Harpaz

Silvia Behar Harpaz

Technion - Israel Institute of Technology

Position

H-Index(all)

288

H-Index(since 2020)

160

I-10 Index(all)

0

I-10 Index(since 2020)

0

Citation(all)

0

Citation(since 2020)

0

Cited By

0

Research Interests

High Energy Physics

Robert W. Gardner Jr

Robert W. Gardner Jr

University of Chicago

Position

Physical Sciences Division

H-Index(all)

250

H-Index(since 2020)

159

I-10 Index(all)

0

I-10 Index(since 2020)

0

Citation(all)

0

Citation(since 2020)

0

Cited By

0

Research Interests

High Energy Physics

Distributed Computing

Advanced Cyberinfrastructure

University Profile Page

Krzysztof Sliwa

Krzysztof Sliwa

Tufts University

Position

H-Index(all)

244

H-Index(since 2020)

144

I-10 Index(all)

0

I-10 Index(since 2020)

0

Citation(all)

0

Citation(since 2020)

0

Cited By

0

Research Interests

elementary particles

gemetry/topology of universe

University Profile Page

Michael Kobel

Michael Kobel

Technische Universität Dresden

Position

Professor der Physik

H-Index(all)

243

H-Index(since 2020)

149

I-10 Index(all)

0

I-10 Index(since 2020)

0

Citation(all)

0

Citation(since 2020)

0

Cited By

0

Research Interests

Elementarteilchenphysik

University Profile Page

Fassouliotis Dimitris

Fassouliotis Dimitris

National and Kapodistrian University of Athens

Position

H-Index(all)

236

H-Index(since 2020)

147

I-10 Index(all)

0

I-10 Index(since 2020)

0

Citation(all)

0

Citation(since 2020)

0

Cited By

0

Research Interests

Elementary particle physics

Thomas Koffas

Thomas Koffas

Carleton University

Position

Professor of Physics

H-Index(all)

234

H-Index(since 2020)

165

I-10 Index(all)

0

I-10 Index(since 2020)

0

Citation(all)

0

Citation(since 2020)

0

Cited By

0

Research Interests

Physics

Experimental High Energy Physics

Neutrinos

Higgs

Detector Development

University Profile Page

Orhan CAKIR

Orhan CAKIR

Ankara Üniversitesi

Position

Professor of High Energy Physics

H-Index(all)

234

H-Index(since 2020)

153

I-10 Index(all)

0

I-10 Index(since 2020)

0

Citation(all)

0

Citation(since 2020)

0

Cited By

0

Research Interests

Particle Physics

Collider Physics

Phenomenology

Beyond the Standard Model

Computing in Physics

University Profile Page

Martín Fernando Tripiana

Martín Fernando Tripiana

Universidad Nacional de La Plata

Position

Doctor en Física Facultad de Ciencias Exactas

H-Index(all)

229

H-Index(since 2020)

148

I-10 Index(all)

0

I-10 Index(since 2020)

0

Citation(all)

0

Citation(since 2020)

0

Cited By

0

Research Interests

University Profile Page

David Wardrope

David Wardrope

University College London

Position

H-Index(all)

229

H-Index(since 2020)

151

I-10 Index(all)

0

I-10 Index(since 2020)

0

Citation(all)

0

Citation(since 2020)

0

Cited By

0

Research Interests

Particle Physics

University Profile Page

Other Articles from authors

Michael T. Weber

Michael T. Weber

Michigan State University

APPLICATION IN LIFE SCIENCES AND BEYOND

Use of Artifical Intelligence and Image Segmentation for 3-Dimensional Modeling

To use Augmented Reality in an automotive vehicle for testing Advanced Driver Assistance Systems a new development approach with high computing power is needed. Reasons for this are a high vehicle speed as well as fewer possible orientation points on an urban test track compared to using AR applications inside a building. With the help of Image Segmentation, Artificial Intelligence for Object Detection, and Visual Simultaneous Localization and Mapping a 3-Dimensional Model with precise information of the urban test site is to be generated. Through the use of AI and Image Segmentation, it is expected to significantly improve performance like computing speed and accuracy for AR applications in automotive vehicles.

Amitkumar Mehta

Amitkumar Mehta

University of Alabama at Birmingham

The Lancet Diabetes & Endocrinology

Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA-KIDNEY trial

BackgroundThe EMPA-KIDNEY trial showed that empagliflozin reduced the risk of the primary composite outcome of kidney disease progression or cardiovascular death in patients with chronic kidney disease mainly through slowing progression. We aimed to assess how effects of empagliflozin might differ by primary kidney disease across its broad population.MethodsEMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA). Patients were eligible if their estimated glomerular filtration rate (eGFR) was 20 to less than 45 mL/min per 1·73 m2, or 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher at screening. They were randomly assigned (1:1) to 10 mg oral empagliflozin once daily or matching placebo. Effects on kidney disease …

Michael Kagan

Michael Kagan

Stanford University

arXiv preprint arXiv:2403.07066

Re-Simulation-based Self-Supervised Learning for Pre-Training Foundation Models

Self-Supervised Learning (SSL) is at the core of training modern large machine learning models, providing a scheme for learning powerful representations that can be used in a variety of downstream tasks. However, SSL strategies must be adapted to the type of training data and downstream tasks required. We propose RS3L, a novel simulation-based SSL strategy that employs a method of re-simulation to drive data augmentation for contrastive learning. By intervening in the middle of the simulation process and re-running simulation components downstream of the intervention, we generate multiple realizations of an event, thus producing a set of augmentations covering all physics-driven variations available in the simulator. Using experiments from high-energy physics, we explore how this strategy may enable the development of a foundation model; we show how R3SL pre-training enables powerful performance in downstream tasks such as discrimination of a variety of objects and uncertainty mitigation. In addition to our results, we make the RS3L dataset publicly available for further studies on how to improve SSL strategies.

Emma Tolley

Emma Tolley

École Polytechnique Fédérale de Lausanne

arXiv preprint arXiv:2403.03016

Wavelet Scattering Networks for Identifying Radio Galaxy Morphologies

Classifying the morphologies of radio galaxies is important to understand their physical properties and evolutionary histories. A galaxy's morphology is often determined by visual inspection, but as survey size increases robust automated techniques will be needed. Deep neural networks are an attractive method for automated classification, but have many free parameters and therefore require extensive training data and are subject to overfitting and generalization issues. We explore hybrid classification methods using the scattering transform, the recursive wavelet decomposition of an input image. We analyse the performance of the scattering transform for the Fanaroff-Riley classification of radio galaxies with respect to CNNs and other machine learning algorithms. We test the robustness of the different classification methods with training data truncation and noise injection, and find that the scattering transform can offer competitive performance with the most accurate CNNs.

Terry Jones

Terry Jones

University of California, Davis

Diabetes Technology & Therapeutics

Two years with a tubeless automated insulin delivery system: A single-arm multicenter trial in children, adolescents, and adults with Type 1 diabetes

Background: The Omnipod® 5 Automated Insulin Delivery (AID) System was shown to be safe and effective following 3 months of use in people with type 1 diabetes (T1D); however, data on the durability of these results are limited. This study evaluated the long-term safety and effectiveness of Omnipod 5 use in people with T1D during up to 2 years of use. Materials and Methods: After a 3-month single-arm, multicenter, pivotal trial in children (6–13.9 years) and adolescents/adults (14–70 years), participants could continue system use in an extension phase. HbA1c was measured every 3 months for up to 15 months; continuous glucose monitor metrics were collected for up to 2 years. Results: Participants (N = 224) completed median (interquartile range) 22.3 (21.7, 22.7) months of AID. HbA1c was reduced in the pivotal trial from 7.7% ± 0.9% in children and 7.2% ± 0.9% in adolescents/adults to 7.0% ± 0.6 …

Abd Ghafur Ahmad

Abd Ghafur Ahmad

Universiti Kebangsaan Malaysia

AIP Conference Proceedings

Synthesis and characterization of different polymorph of TiO2-polyaniline nanocomposite for energy storage application

In the present study we have synthesized Polyaniline-rutile TiO2 nanocomposite (PAni-rTiO2) and Polyanilineanatase TiO2 nanocomposite (PAni-aTiO2) and performed comparative study. In-situ polymerization of aniline in presence of TiO2 nanoparticles was used to synthesize nanocomposite. Nanocomposite were characterized by XRD & TEM for crystal and morphological analysis. FTIR characterization further confirmed emeraldine PAni synthesis. XRD pattern showed anatase and rutile polymorph presence in PAni matrix. LCR analysis showed high dielectric constant in PAni-rTiO2 compared to PAni-aTiO2. CV analysis showed maximum specific capacitance of 129.37 F/g for PAni-aTiO2 and 46.95 F/g for PAni-rTiO2.

Pierre Savard

Pierre Savard

École Polytechnique de Montréal

Physics Results

On the 23rd November 2009, the LHC came alive for the experiments with first energy, proton-proton ie, for a centre collisions of mass delivered (CM) energy, for physics/s, of at 900 the GeV. beam On injection the 30th of the November world record the for beam highest energy energy was particle ramped-up collider to 1.18 in the TeV, world thus at setting/s=

Amitkumar Mehta

Amitkumar Mehta

University of Alabama at Birmingham

Hematological Oncology

Nivolumab plus brentuximab vedotin for relapsed/refractory peripheral T-cell lymphoma and cutaneous T-cell lymphoma

Methods: The expansion cohort of CheckMate 436 enrolled pts with R/R PMBL after autologous hematopoietic cell transplantation (auto-HCT) or≥ 2 prior multi-agent chemotherapy regimens if ineligible for auto-HCT. Pts received NIVO (240 mg IV)+ BV (1.8 mg/kg IV) every 3 weeks until disease progression or unacceptable toxicity. Primary endpoints were investigator-assessed ORR per Lugano 2014 criteria and safety. Secondary endpoints were duration of response (DOR), CR rate, duration of CR, progression-free survival (PFS), and overall survival (OS).Results: Among 30 pts, median age was 35.5 years. At a median FU of 33.7 months, ORR was 73%(95% CI, 54–88) and CR rate was 37%. Median DOR was 31.6 months (95% CI, 23.3–not estimable [NE]) and median duration of CR was not reached (95% CI, 27.9–NE) The Kaplan–Meier estimate of median PFS was 26.0 months (95% CI, 2.6–NE; Figure …

Elias Sideras-Haddad

Elias Sideras-Haddad

University of the Witwatersrand

Physica E: Low-dimensional Systems and Nanostructures

Evidence of ferromagnetic behaviour in carbon nanospheres synthesised by the chemical vapour deposition technique

The magnetic and electrical properties of two different sets of carbon nanospheres synthesised by chemical vapour deposition were investigated, using a state-of-the-art Physical Property Measurement System (PPMS). Scanning electron microscopy imaging of the carbon nanospheres revealed a difference in size with a diameters distribution of approximately 200–400 nm and 400–500 nm. PPMS magnetic measurements of the 400–500 nm diameter carbon nanospheres exhibited diamagnetism at high temperatures and clear superparamagnetic behaviour at very low temperatures (< 10 K). However, ferromagnetism was observed in carbon nanospheres of diameter< 400 nm. The results obtained from both inductively Coupled Plasma Mass Spectrometry and Mössbauer spectroscopy, and as well as the calculated saturation magnetisation indicate that the observed ferromagnetism in the carbon nanospheres of …

Zhihua Liang

Zhihua Liang

Southern Methodist University

arXiv preprint arXiv:2401.15755

Development of A 16: 1 serializer for data transmission at 5 Gbps

Radiation tolerant, high speed and low power serializer ASIC is critical for optical link systems in particle physics experiments. Based on a commercial 0.25 um silicon-on-sapphire CMOS technology, we design a 16:1 serializer with 5 Gbps serial data rate. This ASIC has been submitted for fabrication. The post-layout simulation indicates the deterministic jitter is 54 ps (pk-pk) and random jitter is 3 ps (rms). The power consumption of the serializer is 500 mW. The design details and post layout simulation results are presented in this paper.

Augusto Santiago Cerqueira

Augusto Santiago Cerqueira

Universidade Federal de Juiz de Fora

Physics Letters B

Search for non-resonant production of semi-visible jets using Run 2 data in ATLAS

Semi-visible jets, with a significant contribution to the event's missing transverse momentum, can arise in strongly interacting dark sectors. This results in an event topology where one of the jets can be aligned with the direction of the missing transverse momentum. The first search for semi-visible jets produced via a t-channel mediator exchange is presented. The analysis uses proton-proton collisions with an integrated luminosity of 139 fb−1 and a centre-of-mass energy of 13 TeV, collected with the ATLAS detector during the Run 2 of the LHC. No excess over Standard Model predictions is observed. Assuming a coupling strength of unity between the mediator, a Standard Model quark and a dark quark, mediator masses up to 2.7 TeV are excluded at the 95% confidence level. Upper limits on the coupling strength are also derived.

D. H. Beck

D. H. Beck

University of Illinois at Urbana-Champaign

Journal of the American College of Cardiology

1: 2 AV CONDUCTION LEADING TO INAPPROPRIATE ICD SHOCK

BackgroundDual AV nodal physiology describes the ability of the AV node (AVN) to conduct using two distinct pathways, a fast AV nodal pathway and a slow pathway. Most commonly this results in AVNRT. Rarely, it can allow for a phenomenon known as 1: 2 AV conduction. 1: 2 AV conduction denotes one atrial impulse giving way to two ventricular depolarizations. This is often incorrectly interpreted as a tachyarrhythmia. Herein, we report a case of 1: 2 AV condition resulting in erroneous ICD recognition of VT and inappropriate ICD therapies.

Saul Youssef

Saul Youssef

Boston University

Injury

The impact of anticoagulant medications on fragility femur fracture care: The hip and femoral fracture anticoagulation surgical timing evaluation (HASTE) study

IntroductionDue to their hypocoagulable state on presentation, anticoagulated patients with femoral fragility fractures typically experience delays to surgery. There are no large, multicentre studies previously carried out within the United Kingdom (UK) evaluating the impact of anticoagulant use in this patient population. This study aimed to evaluate the current epidemiology and compare the perioperative management of anticoagulated and non-anticoagulated femoral fragility fracture patients.MethodsData was prospectively collected through a collaborative, multicentre approach involving hospitals across the United Kingdom. Femoral fragility fracture patients aged ≥60 years and admitted to hospital between 1st May to 31st July 2023 were included. Main outcomes under investigation included time to surgery, receipt of blood transfusion between admission and 48 hours following surgery, length of stay, and 30-day …

luca ambroz

luca ambroz

University of Oxford

Physical Review D

Search for quantum black hole production in lepton+ jet final states using proton-proton collisions at s= 13 TeV with the ATLAS detector

A search for quantum black holes in electron+ jet and muon+ jet invariant mass spectra is performed with 140 fb− 1 of data collected by the ATLAS detector in proton-proton collisions at s= 13 TeV at the Large Hadron Collider. The observed invariant mass spectrum of lepton+ jet pairs is consistent with Standard Model expectations. Upper limits are set at 95% confidence level on the production cross section times branching fractions for quantum black holes decaying into a lepton and a quark in a search region with invariant mass above 2.0 TeV. The resulting quantum black hole lower mass threshold limit is 9.2 TeV in the Arkani-Hamed-Dimopoulos-Dvali model, and 6.8 TeV in the Randall-Sundrum model.

Teng Jian Khoo

Teng Jian Khoo

University of Cambridge

Physics Letters B

Search for non-resonant production of semi-visible jets using Run 2 data in ATLAS

Semi-visible jets, with a significant contribution to the event's missing transverse momentum, can arise in strongly interacting dark sectors. This results in an event topology where one of the jets can be aligned with the direction of the missing transverse momentum. The first search for semi-visible jets produced via a t-channel mediator exchange is presented. The analysis uses proton-proton collisions with an integrated luminosity of 139 fb−1 and a centre-of-mass energy of 13 TeV, collected with the ATLAS detector during the Run 2 of the LHC. No excess over Standard Model predictions is observed. Assuming a coupling strength of unity between the mediator, a Standard Model quark and a dark quark, mediator masses up to 2.7 TeV are excluded at the 95% confidence level. Upper limits on the coupling strength are also derived.

Robert W. Gardner Jr

Robert W. Gardner Jr

University of Chicago

arXiv preprint arXiv:2403.17925

Testing the CDM Cosmological Model with Forthcoming Measurements of the Cosmic Microwave Background with SPT-3G

We forecast constraints on cosmological parameters enabled by three surveys conducted with SPT-3G, the third-generation camera on the South Pole Telescope. The surveys cover separate regions of 1500, 2650, and 6000 to different depths, in total observing 25% of the sky. These regions will be measured to white noise levels of roughly 2.5, 9, and 12 , respectively, in CMB temperature units at 150 GHz by the end of 2024. The survey also includes measurements at 95 and 220 GHz, which have noise levels a factor of ~1.2 and 3.5 times higher than 150 GHz, respectively, with each band having a polarization noise level ~ times higher than the temperature noise. We use a novel approach to obtain the covariance matrices for jointly and optimally estimated gravitational lensing potential bandpowers and unlensed CMB temperature and polarization bandpowers. We demonstrate the ability to test the model via the consistency of cosmological parameters constrained independently from SPT-3G and Planck data, and consider the improvement in constraints on extension parameters from a joint analysis of SPT-3G and Planck data. The cosmological parameters are typically constrained with uncertainties up to ~2 times smaller with SPT-3G data, compared to Planck, with the two data sets measuring significantly different angular scales and polarization levels, providing additional tests of the standard cosmological model.

Teng Jian Khoo

Teng Jian Khoo

University of Cambridge

The European Physical Journal C

A precise measurement of the Z-boson double-differential transverse momentum and rapidity distributions in the full phase space of the decay leptons with the ATLAS …

This paper presents for the first time a precise measurement of the production properties of the Z boson in the full phase space of the decay leptons. This is in contrast to the many previous precise unfolded measurements performed in the fiducial phase space of the decay leptons. The measurement is obtained from proton–proton collision data collected by the ATLAS experiment in 2012 at TeV at the LHC and corresponding to an integrated luminosity of 20.2 fb. The results, based on a total of 15.3 million Z-boson decays to electron and muon pairs, extend and improve a previous measurement of the full set of angular coefficients describing Z-boson decay. The double-differential cross-section distributions in Z-boson transverse momentum  and rapidity  are measured in the pole region, defined as GeV, over the range . The total uncertainty of the normalised cross-section measurements in the peak region of the …

Victor Bobrovnikov

Victor Bobrovnikov

Novosibirsk State University

Frontiers of Physics

STCF conceptual design report (Volume 1): Physics & detector

The super τ-charm facility (STCF) is an electron–positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5 × 1035 cm−2·s−1 or higher. The STCF will produce a data sample about a factor of 100 larger than that of the present τ-charm factory — the BEPCII, providing a unique platform for exploring the asymmetry of matter-antimatter (charge-parity violation), in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions, as well as searching for exotic hadrons and physics beyond the Standard Model. The STCF project in China is under development with an extensive R&D program. This document presents the physics opportunities at the STCF, describes conceptual designs of the STCF detector system, and discusses future plans for detector R&D and physics …

Marta  Losada

Marta Losada

Universidad Antonio Nariño

Physics Letters B

Search for non-resonant Higgs boson pair production in the final state in pp collisions at = 13 TeV with the ATLAS detector

A search for non-resonant Higgs boson pair production, as predicted by the Standard Model, is presented, where one of the Higgs bosons decays via the H→ b b channel and the other via one of the H→ W W⁎/Z Z⁎/τ τ channels. The analysis selection requires events to have at least two b-tagged jets and exactly two leptons (electrons or muons) with opposite electric charge in the final state. Candidate events consistent with Higgs boson pair production are selected using a multi-class neural network discriminant. The analysis uses 139 fb− 1 of pp collision data recorded at a centre-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. An observed (expected) upper limit of 1.2 (0.9− 0.3+ 0.4) pb is set on the non-resonant Higgs boson pair production cross-section at 95% confidence level, which is equivalent to 40 (29− 9+ 14) times the value predicted in the Standard Model.

Orhan CAKIR

Orhan CAKIR

Ankara Üniversitesi

Physics Letters B

Measurement of the tt¯ cross section and its ratio to the Z production cross section using pp collisions at s= 13.6 TeV with the ATLAS detector

The inclusive top-quark-pair production cross section σ t t¯ and its ratio to the Z-boson production cross section have been measured in proton–proton collisions at s= 13.6 TeV, using 29 fb− 1 of data collected in 2022 with the ATLAS experiment at the Large Hadron Collider. Using events with an opposite-charge electron-muon pair and b-tagged jets, and assuming Standard Model decays, the top-quark-pair production cross section is measured to be σ t t¯= 850±3 (stat.)±18 (syst.)±20 (lumi.) pb. The ratio of the t t¯ and the Z-boson production cross sections is also measured, where the Z-boson contribution is determined for inclusive e+ e− and μ+ μ− events in a fiducial phase space. The relative uncertainty on the ratio is reduced compared to the t t¯ cross section, thanks to the cancellation of several systematic uncertainties. The result for the ratio, R t t¯/Z= 1.145±0.003 (stat.)±0.021 (syst.)±0.002 (lumi.) is consistent …

Other articles from Physical Review D journal

Laurent Lellouch

Laurent Lellouch

Aix-Marseille Université

Physical Review D

Hadronic vacuum polarization: comparing lattice QCD and data-driven results in systematically improvable ways

The precision with which hadronic vacuum polarization (HVP) is obtained determines how accurately important observables, such as the muon anomalous magnetic moment a μ or the low-energy running of the electromagnetic coupling α, are predicted. The two most precise approaches for determining HVP are dispersive relations combined with e+ e−→ hadrons cross section data and lattice QCD. However, the results obtained in these two approaches display significant tensions, whose origins are not understood. Here we present a framework that sheds light on this issue and—if the two approaches can be reconciled—allows them to be combined. Via this framework, we test the hypothesis that the tensions can be explained by modifying the R-ratio in different intervals of center-of-mass energy s. As ingredients, we consider observables that have been precisely determined in both approaches. These are the …

Fuquan Wang

Fuquan Wang

University of Wisconsin-Madison

Physical Review D

Search for quantum black hole production in lepton+ jet final states using proton-proton collisions at s= 13 TeV with the ATLAS detector

A search for quantum black holes in electron+ jet and muon+ jet invariant mass spectra is performed with 140 fb− 1 of data collected by the ATLAS detector in proton-proton collisions at s= 13 TeV at the Large Hadron Collider. The observed invariant mass spectrum of lepton+ jet pairs is consistent with Standard Model expectations. Upper limits are set at 95% confidence level on the production cross section times branching fractions for quantum black holes decaying into a lepton and a quark in a search region with invariant mass above 2.0 TeV. The resulting quantum black hole lower mass threshold limit is 9.2 TeV in the Arkani-Hamed-Dimopoulos-Dvali model, and 6.8 TeV in the Randall-Sundrum model.

Christian Weber

Christian Weber

Technische Universität Berlin

Physical Review D

Search for quantum black hole production in lepton+ jet final states using proton-proton collisions at s= 13 TeV with the ATLAS detector

A search for quantum black holes in electron+ jet and muon+ jet invariant mass spectra is performed with 140 fb− 1 of data collected by the ATLAS detector in proton-proton collisions at s= 13 TeV at the Large Hadron Collider. The observed invariant mass spectrum of lepton+ jet pairs is consistent with Standard Model expectations. Upper limits are set at 95% confidence level on the production cross section times branching fractions for quantum black holes decaying into a lepton and a quark in a search region with invariant mass above 2.0 TeV. The resulting quantum black hole lower mass threshold limit is 9.2 TeV in the Arkani-Hamed-Dimopoulos-Dvali model, and 6.8 TeV in the Randall-Sundrum model.

Dariescu

Dariescu

Universitatea Alexandru Ioan Cuza din Iasi

Physical Review D

Charged particles in the background of the Kiselev solution in power-Maxwell electrodynamics

In this work we analyze the motion of charged particles in the background of the Kiselev geometry, which is considered here as an exact solution in the context of power-Maxwell electrodynamics. As it is well known, one can use either an electric ansatz or a magnetic one for the nonlinear electromagnetic field. We study the motion of an electrically charged particle for an electrically charged black hole and also for a magnetically charged black hole. In the second case the motion is restricted to Poincaré cones of various angles, as expected.

Hiranya Peiris

Hiranya Peiris

University College London

Physical Review D

Analog vacuum decay from vacuum initial conditions

Ultracold atomic gases can undergo phase transitions that mimic relativistic vacuum decay, allowing us to empirically test early Universe physics in tabletop experiments. We investigate the physics of these analog systems, going beyond previous analyses of the classical equations of motion to study quantum fluctuations in the cold-atom false vacuum. We show that the fluctuation spectrum of this vacuum state agrees with the usual relativistic result in the regime where the classical analogy holds, providing further evidence for the suitability of these systems for studying vacuum decay. Using a suite of semiclassical lattice simulations, we simulate bubble nucleation from this analog vacuum state in a 1D homonuclear potassium-41 mixture, finding qualitative agreement with instanton predictions. We identify realistic parameters for this system that will allow us to study vacuum decay with current experimental …

Hiranya Peiris

Hiranya Peiris

University College London

Physical Review D

Deep learning insights into cosmological structure formation

The evolution of linear initial conditions present in the early Universe into extended halos of dark matter at late times can be computed using cosmological simulations. However, a theoretical understanding of this complex process remains elusive; in particular, the role of anisotropic information in the initial conditions in establishing the final mass of dark matter halos remains a long-standing puzzle. Here, we build a deep learning framework to investigate this question. We train a three-dimensional convolutional neural network to predict the mass of dark matter halos from the initial conditions, and quantify in full generality the amounts of information in the isotropic and anisotropic aspects of the initial density field about final halo masses. We find that anisotropies add a small, albeit statistically significant amount of information over that contained within spherical averages of the density field about final halo mass …

Charalampos Moustakidis

Charalampos Moustakidis

Aristotle University of Thessaloniki

Physical Review D

Constraints for the X17 boson from compact objects observations

We investigate the hypothetical X17 boson on neutron stars and quark stars (QSs) using various hadronic equation of states (EoSs) with phenomenological or microscopic origin. Our aim is to set realistic constraints on its coupling constant and the mass scaling, with respect to causality and various possible upper mass limits and the dimensionless tidal deformability Λ 1.4. In particular, we pay special attention to two main phenomenological parameters of the X17, one is related to the coupling constant g that it has with hadrons or quarks and the other with the in-medium effects through regulator C. Both are very crucial concerning the contribution on the total energy density and pressure. In the case of considering the X17 as a carrier of nuclear force in relativistic mean field theory, an admixture into the vector boson segment was constrained by 20% and 30%. In our investigation, we came to the general conclusion …

Charalampos Moustakidis

Charalampos Moustakidis

Aristotle University of Thessaloniki

Physical Review D

Hybrid stars in light of the HESS J1731-347 remnant and the PREX-II experiment

The recent analysis on the central compact object in the HESS J1731-347 remnant suggests interestingly small values for its mass and radius. Such an observation favors soft nuclear models that may be challenged by the observation of massive compact stars. In contrast, the recent PREX-II experiment, concerning the neutron skin thickness of Pb 208, points toward stiff equations of state that favor larger compact star radii. In the present study, we aim to explore the compatibility between stiff hadronic equations of state (favored by PREX-II) and the HESS J1731-347 remnant in the context of hybrid stars. For the construction of hybrid equations of state we use three widely employed Skyrme models combined with the well-known vector MIT bag model. Furthermore we consider two different scenarios concerning the energy density of the bag. In the first case, that of a constant bag parameter, we find that the resulting …

Claudia Moreno

Claudia Moreno

Universidad de Guadalajara

Physical Review D

GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run

The second Gravitational-Wave Transient Catalog, GWTC-2, reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15∶ 00 UTC and 1 October 2019 15∶ 00 UTC. Here, we present GWTC-2.1, which reports on a deeper list of candidate events observed over the same period. We analyze the final version of the strain data over this period with improved calibration and better subtraction of excess noise, which has been publicly released. We employ three matched-filter search pipelines for candidate identification, and estimate the probability of astrophysical origin for each candidate event. While GWTC-2 used a false alarm rate threshold of 2 per year, we include in GWTC-2.1, 1201 candidates that pass a false alarm rate threshold of 2 per day. We calculate the source properties of a subset of 44 high-significance candidates that have a …

Claudia Moreno

Claudia Moreno

Universidad de Guadalajara

Physical Review D

Post-Newtonian gravitational waves with cosmological constant from the Einstein-Hilbert theory

We study the compact binary dynamics in the post-Newtonian approach implemented to the Einstein-Hilbert action adding the cosmological constant Λ at first post-Newtonian (1PN) order. We consider very small values of Λ finding that it plays the role of a PN factor to derive the Lagrangian of a compact two-body system at the center of mass frame at 1PN. Furthermore, the phase function ϕ (t) is obtained from the balance equation, and the two polarizations h+ and h× are also calculated. We observe changes due to Λ only at very low frequencies, and we notice that it plays the role of “stretch” the spacetime such that both amplitudes become smaller. However, given its nearly negligible value, Λ has no relevance at higher frequencies whatsoever.

Ian M. Shoemaker

Ian M. Shoemaker

University of South Dakota

Physical Review D

Long-lived particles and the quiet Sun

The nuclear reaction network within the interior of the Sun is an efficient MeV physics factory and can produce long-lived particles generic to dark sector models. In this work we consider the sensitivity of satellite instruments, primarily the RHESSI spectrometer, that observe the quiet Sun in the MeV regime where backgrounds are low. We find that quiet Sun observations offer a powerful and complementary probe in regions of parameter space, where the long-lived particle decay length is longer than the radius of the Sun and shorter than the distance between the Sun and Earth. We comment on connections to recent model-building work on heavy neutral leptons coupled to neutrinos and high-quality axions from mirror symmetries.

Hao Y. Zhang / 张昊

Hao Y. Zhang / 张昊

University of Pennsylvania

Physical Review D

Intermediate defect groups, polarization pairs, and noninvertible duality defects

Within the framework of relative and absolute quantum field theories (QFTs), we present a general formalism for understanding polarizations of the intermediate defect group and constructing noninvertible duality defects in theories in 2 k spacetime dimensions with self-dual gauge fields. We introduce the polarization pair, which fully specifies absolute QFTs as far as their (k− 1)-form defect groups are concerned, including their (k− 1)-form symmetries, global structures (including discrete θ-angle), and local counterterms. Using the associated symmetry topological field theory (TFT), we show that the polarization pair is capable of succinctly describing topological manipulations, eg, gauging (k− 1)-form global symmetries and stacking counterterms, of absolute QFTs. Furthermore, automorphisms of the (k− 1)-form charge lattice naturally act on polarization pairs via their action on the defect group; they can be viewed as …

Igor Altsybeev

Igor Altsybeev

St. Petersburg State University

Physical Review D

Measurement of the fraction of jet longitudinal momentum carried by baryons in collisions

Recent measurements of charm-baryon production in hadronic collisions have questioned the universality of charm-quark fragmentation across different collision systems. In this work the fragmentation of charm quarks into charm baryons is probed, by presenting the first measurement of the longitudinal jet momentum fraction carried by Λ c+ baryons, z∥ ch, in hadronic collisions. The results are obtained in proton-proton (p p) collisions at s= 13 TeV at the LHC, with Λ c+ baryons and charged (track-based) jets reconstructed in the transverse momentum intervals of 3≤ p T Λ c+< 15 GeV/c and 7≤ p T jet ch< 15 GeV/c, respectively. The z∥ ch distribution is compared to a measurement of D 0-tagged charged jets in p p collisions as well as to pythia 8 simulations. The data hints that the fragmentation of charm quarks into charm baryons is softer with respect to charm mesons, in the measured kinematic interval, as …

Fabrizio BARONE

Fabrizio BARONE

Università degli Studi di Salerno

Physical Review D

GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run

The second Gravitational-Wave Transient Catalog, GWTC-2, reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15∶ 00 UTC and 1 October 2019 15∶ 00 UTC. Here, we present GWTC-2.1, which reports on a deeper list of candidate events observed over the same period. We analyze the final version of the strain data over this period with improved calibration and better subtraction of excess noise, which has been publicly released. We employ three matched-filter search pipelines for candidate identification, and estimate the probability of astrophysical origin for each candidate event. While GWTC-2 used a false alarm rate threshold of 2 per year, we include in GWTC-2.1, 1201 candidates that pass a false alarm rate threshold of 2 per day. We calculate the source properties of a subset of 44 high-significance candidates that have a …

John Veitch

John Veitch

University of Glasgow

Physical Review D

GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run

The second Gravitational-Wave Transient Catalog, GWTC-2, reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15∶ 00 UTC and 1 October 2019 15∶ 00 UTC. Here, we present GWTC-2.1, which reports on a deeper list of candidate events observed over the same period. We analyze the final version of the strain data over this period with improved calibration and better subtraction of excess noise, which has been publicly released. We employ three matched-filter search pipelines for candidate identification, and estimate the probability of astrophysical origin for each candidate event. While GWTC-2 used a false alarm rate threshold of 2 per year, we include in GWTC-2.1, 1201 candidates that pass a false alarm rate threshold of 2 per day. We calculate the source properties of a subset of 44 high-significance candidates that have a …

Elham E Khoda

Elham E Khoda

University of Washington

Physical Review D

Search for quantum black hole production in lepton+ jet final states using proton-proton collisions at s= 13 TeV with the ATLAS detector

A search for quantum black holes in electron+ jet and muon+ jet invariant mass spectra is performed with 140 fb− 1 of data collected by the ATLAS detector in proton-proton collisions at s= 13 TeV at the Large Hadron Collider. The observed invariant mass spectrum of lepton+ jet pairs is consistent with Standard Model expectations. Upper limits are set at 95% confidence level on the production cross section times branching fractions for quantum black holes decaying into a lepton and a quark in a search region with invariant mass above 2.0 TeV. The resulting quantum black hole lower mass threshold limit is 9.2 TeV in the Arkani-Hamed-Dimopoulos-Dvali model, and 6.8 TeV in the Randall-Sundrum model.

David Silvermyr

David Silvermyr

Lunds Universitet

Physical Review D

Measurement of the fraction of jet longitudinal momentum carried by baryons in collisions

Recent measurements of charm-baryon production in hadronic collisions have questioned the universality of charm-quark fragmentation across different collision systems. In this work the fragmentation of charm quarks into charm baryons is probed, by presenting the first measurement of the longitudinal jet momentum fraction carried by Λ c+ baryons, z∥ ch, in hadronic collisions. The results are obtained in proton-proton (p p) collisions at s= 13 TeV at the LHC, with Λ c+ baryons and charged (track-based) jets reconstructed in the transverse momentum intervals of 3≤ p T Λ c+< 15 GeV/c and 7≤ p T jet ch< 15 GeV/c, respectively. The z∥ ch distribution is compared to a measurement of D 0-tagged charged jets in p p collisions as well as to pythia 8 simulations. The data hints that the fragmentation of charm quarks into charm baryons is softer with respect to charm mesons, in the measured kinematic interval, as …

Giuseppe Callea

Giuseppe Callea

University of Glasgow

Physical Review D

Search for quantum black hole production in lepton+ jet final states using proton-proton collisions at s= 13 TeV with the ATLAS detector

A search for quantum black holes in electron+ jet and muon+ jet invariant mass spectra is performed with 140 fb− 1 of data collected by the ATLAS detector in proton-proton collisions at s= 13 TeV at the Large Hadron Collider. The observed invariant mass spectrum of lepton+ jet pairs is consistent with Standard Model expectations. Upper limits are set at 95% confidence level on the production cross section times branching fractions for quantum black holes decaying into a lepton and a quark in a search region with invariant mass above 2.0 TeV. The resulting quantum black hole lower mass threshold limit is 9.2 TeV in the Arkani-Hamed-Dimopoulos-Dvali model, and 6.8 TeV in the Randall-Sundrum model.

Minsu Park

Minsu Park

University of Pennsylvania

Physical Review D

Atacama Cosmology Telescope: The persistence of neutrino self-interaction in cosmological measurements

We use data from the Atacama Cosmology Telescope (ACT) DR4 to search for the presence of neutrino self-interaction in the cosmic microwave background. Consistent with prior works, the posterior distributions we find are bimodal, with one mode consistent with Λ CDM and one where neutrinos strongly self-interact. By combining ACT data with large-scale information from WMAP, we find that a delayed onset of neutrino free streaming caused by significantly strong neutrino self-interaction is compatible with these data at the 2− 3 σ level. As seen in the past, the preference shifts to Λ CDM with the inclusion of Planck data. We determine that the preference for strong neutrino self-interaction is largely driven by angular scales corresponding to 700≲ ℓ≲ 1000 in the ACT E-mode polarization data. This region is expected to be key to discriminate between neutrino self-interacting modes and will soon be probed with …

Herodotos Herodotou

Herodotos Herodotou

Cyprus University of Technology

Physical Review D

Supersymmetric QCD on the lattice: Fine-tuning of the Yukawa couplings

We determine the fine-tuning of the Yukawa couplings of supersymmetric QCD, discretized on a lattice. We use perturbation theory at one-loop level. The modified minimal subtraction scheme (MS) is employed; by its definition, this scheme requires perturbative calculations, in the continuum and/or on the lattice. On the lattice, we utilize the Wilson formulation for gluon, quark, and gluino fields; for squark fields we use naive discretization. The sheer difficulties of this study lie in the fact that different components of squark fields mix among themselves at the quantum level and the action’s symmetries, such as parity and charge conjugation, allow an additional Yukawa coupling. Consequently, for an appropriate fine-tuning of the Yukawa terms, these mixings must be taken into account in the renormalization conditions. All Green’s functions and renormalization factors are analytic expressions depending on the number of …