Claudia Moreno

Claudia Moreno

Universidad de Guadalajara

H-index: 29

Latin America-Mexico

About Claudia Moreno

Claudia Moreno, With an exceptional h-index of 29 and a recent h-index of 28 (since 2020), a distinguished researcher at Universidad de Guadalajara, specializes in the field of General Relativity, Gravitational Waves, Cosmology.

His recent articles reflect a diverse array of research interests and contributions to the field:

arXiv: Ultralight vector dark matter search using data from the KAGRA O3GK run

Ultralight vector dark matter search using data from the KAGRA O3GK run

A joint Fermi-GBM and Swift-BAT analysis of Gravitational-wave candidates from the third Gravitational-wave Observing Run

Post-Newtonian gravitational waves with cosmological constant from the Einstein-Hilbert theory

GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run

arXiv: Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo

Quintom cosmology from an effective theory

A search for distinctive footprints of compact binary coalescence within alternatives theories of gravity

Claudia Moreno Information

University

Universidad de Guadalajara

Position

___

Citations(all)

3664

Citations(since 2020)

3456

Cited By

317

hIndex(all)

29

hIndex(since 2020)

28

i10Index(all)

47

i10Index(since 2020)

41

Email

University Profile Page

Universidad de Guadalajara

Claudia Moreno Skills & Research Interests

General Relativity

Gravitational Waves

Cosmology

Top articles of Claudia Moreno

arXiv: Ultralight vector dark matter search using data from the KAGRA O3GK run

Authors

AG Abac,ML Chiofalo,G Nieradka,R Pegna,C North,R Bhandare,G Pierra,A Amato,JG Baier,D Chen,B Haskell,F Robinet,M Fyffe,M Arogeti,P Stevens,DD White,TF Davies,E Payne,M Wright,K Johansmeyer,K Hayama,P-F Cohadon,CG Collette,D Sellers,S Hoang,V Sipala,H Heitmann,T O'Hanlon,B Edelman,G McCarrol,AD Huddart,KD Sullivan,T Harder,A Garron,TA Clarke,YT Huang,J Junker,M Hennig,N Hirata,J Portell,R McCarthy,M Weinert,R Poulton,G Ballardin,D Bankar,A Bianchi,M Montani,CD Panzer,X Chen,R Takahashi,J Lange,K Schouteden,Yitian Chen,A Sasli,F Yang,LM Modafferi,ME Zucker,J O'Dell,D Lumaca,AP Spencer,M Millhouse,G Quéméner,M Norman,MJ Szczepańczyk,S-C Hsu,ST Countryman,C Chatterjee,AL James,KN Nagler,E Chassande-Mottin,W Kiendrebeogo,M Tacca,FJ Raab,TR Saravanan,VP Mitrofanov,S Bernuzzi,C Adamcewicz,L Conti,C Tong-Yu,J Golomb,X Li,A Perego,ERG von Reis,J Woehler,G Bogaert,F Fidecaro,B Shen,JM Ezquiaga,D Macri,V Juste,S Sachdev,JD Bentley,R Sturani,TP Lott IV,K Takatani,D Beniwal,U Dupletsa,A Boumerdassi,F Glotin,Y Lee,R Bhatt,A Couineaux,M Wade,N Kanda,J Novak,S Bini,I Ferrante,RA Alfaidi,N Johny,LE Sanchez,J Heinze,J Zhang,M Kinley-Hanlon,AJ Weinstein,T Sainrat,NN Janthalur,A Trovato,A Romero,K Tomita,DE McClelland,B Fornal,M Heurs,AM Gretarsson,A Chincarini,BB Lane,AE Romano,V Fafone,FY Khalili,F Linde,C Messick,A Heffernan,J Gargiulo,V JaberianHamedan,SW Reid,D Moraru,D Pathak,M Iwaya,G Grignani,T Yan,K AultONeal,SA Pai,Y Xu,IM Pinto,KW Chung,C Palomba,J Tissino,T Klinger,Ll M Mir,K Kwan,C Posnansky

Published Date

2024/3/5

Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U (1) B− L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U (1) B− L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM.

Ultralight vector dark matter search using data from the KAGRA O3GK run

Authors

AG Abac,R Abbott,H Abe,I Abouelfettouh,F Acernese,K Ackley,C Adamcewicz,S Adhicary,N Adhikari,RX Adhikari,VK Adkins,VB Adya,C Affeldt,D Agarwal,M Agathos,OD Aguiar,I Aguilar,L Aiello,A Ain,P Ajith,T Akutsu,S Albanesi,RA Alfaidi,A Al-Jodah,C Alléné,A Allocca,S Al-Shammari,PA Altin,S Alvarez-Lopez,A Amato,L Amez-Droz,A Amorosi,C Amra,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Andia,M Ando,T Andrade,N Andres,M Andrés-Carcasona,T Andrić,J Anglin,S Ansoldi,JM Antelis,S Antier,M Aoumi,EZ Appavuravther,S Appert,SK Apple,K Arai,A Araya,MC Araya,JS Areeda,N Aritomi,F Armato,N Arnaud,M Arogeti,SM Aronson,KG Arun,G Ashton,Y Aso,M Assiduo,S Melo,SM Aston,P Astone,F Aubin,K AultONeal,G Avallone,S Babak,F Badaracco,C Badger,S Bae,S Bagnasco,E Bagui,Y Bai,JG Baier,R Bajpai,T Baka,M Ball,G Ballardin,SW Ballmer,S Banagiri,B Banerjee,D Bankar,P Baral,JC Barayoga,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,SD Barthelmy,MA Barton,I Bartos,S Basak,A Basalaev,R Bassiri,A Basti,M Bawaj,P Baxi,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,F Beirnaert,M Bejger,D Belardinelli,AS Bell,V Benedetto,D Beniwal,W Benoit,JD Bentley,M Ben Yaala,S Bera,M Berbel,F Bergamin,BK Berger,S Bernuzzi,M Beroiz,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,N Bevins,R Bhandare,U Bhardwaj,R Bhatt,D Bhattacharjee,S Bhaumik,S Bhowmick,A Bianchi,IA Bilenko,G Billingsley,A Binetti,S Bini,O Birnholtz,S Biscoveanu,A Bisht,M Bitossi,M-A Bizouard,JK Blackburn,CD Blair,DG Blair,F Bobba

Journal

arXiv preprint arXiv:2403.03004

Published Date

2024/3/5

Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM.

A joint Fermi-GBM and Swift-BAT analysis of Gravitational-wave candidates from the third Gravitational-wave Observing Run

Authors

C Fletcher,J Wood,R Hamburg,P Veres,CM Hui,E Bissaldi,MS Briggs,E Burns,WH Cleveland,MM Giles,A Goldstein,BA Hristov,D Kocevski,S Lesage,B Mailyan,C Malacaria,S Poolakkil,A von Kienlin,CA Wilson-Hodge,M Crnogorčević,J DeLaunay,A Tohuvavohu,R Caputo,SB Cenko,S Laha,T Parsotan,R Abbott,H Abe,F Acernese,K Ackley,N Adhikari,RX Adhikari,VK Adkins,VB Adya,C Affeldt,D Agarwal,M Agathos,K Agatsuma,N Aggarwal,OD Aguiar,Luca Aiello,A Ain,P Ajith,T Akutsu,S Albanesi,RA Alfaidi,A Allocca,PA Altin,A Amato,C Anand,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Ando,T Andrade,N Andres,M Andrés-Carcasona,T Andríc,SV Angelova,S Ansoldi,JM Antelis,S Antier,T Apostolatos,EZ Appavuravther,S Appert,SK Apple,K Arai,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,M Arogeti,SM Aronson,KG Arun,H Asada,Y Asali,G Ashton,Y Aso,M Assiduo,S Melo,SM Aston,P Astone,F Aubin,K AultONeal,C Austin,S Babak,F Badaracco,MKM Bader,C Badger,S Bae,Y Bae,AM Baer,S Bagnasco,Y Bai,J Baird,R Bajpai,T Baka,M Ball,G Ballardin,SW Ballmer,A Balsamo,G Baltus,S Banagiri,B Banerjee,D Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,S Basak,R Bassiri,A Basti,M Bawaj,JC Bayley,M Bazzan,BR Becher,B Bécsy,VM Bedakihale,F Beirnaert,M Bejger,I Belahcene,V Benedetto,D Beniwal,MG Benjamin,TF Bennett,JD Bentley,M BenYaala,S Bera,M Berbel,F Bergamin,BK Berger,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare

Journal

arXiv preprint arXiv:2308.13666

Published Date

2023/8/25

The detection of GW170817 (Abbott et al. 2017b) coincident with the short gamma-ray burst GRB 170817A (Goldstein et al. 2017; Savchenko et al. 2017) was a groundbreaking discovery for the multimessenger era. Not only was it the first binary neutron star (BNS) merger detected by the gravitational-wave (GW) instruments Advanced LIGO (Aasi et al. 2015) and Advanced Virgo (Acernese et al. 2014), it was also the first, and to date only, GW detection with a confirmed electromagnetic (EM) counterpart. Since then, the search for EM emission from more of these extreme events has been at the forefront of multimessenger astronomy, particularly in the gamma-ray energy band, since GRB 170817A demonstrated that BNS mergers are a progenitor of short gamma-ray bursts (GRBs; Abbott et al. 2017a). GWs have also been observed from the mergers of other compact objects, such as binary black hole (BBH) and …

Post-Newtonian gravitational waves with cosmological constant from the Einstein-Hilbert theory

Authors

Ricardo Escobedo,Claudia Moreno,Rafael Hernández-Jiménez

Journal

Physical Review D

Published Date

2024/3/19

We study the compact binary dynamics in the post-Newtonian approach implemented to the Einstein-Hilbert action adding the cosmological constant Λ at first post-Newtonian (1PN) order. We consider very small values of Λ finding that it plays the role of a PN factor to derive the Lagrangian of a compact two-body system at the center of mass frame at 1PN. Furthermore, the phase function ϕ (t) is obtained from the balance equation, and the two polarizations h+ and h× are also calculated. We observe changes due to Λ only at very low frequencies, and we notice that it plays the role of “stretch” the spacetime such that both amplitudes become smaller. However, given its nearly negligible value, Λ has no relevance at higher frequencies whatsoever.

GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run

Authors

R Abbott,TD Abbott,F Acernese,K Ackley,C Adams,N Adhikari,RX Adhikari,VB Adya,C Affeldt,D Agarwal,M Agathos,K Agatsuma,N Aggarwal,OD Aguiar,L Aiello,A Ain,P Ajith,S Albanesi,A Allocca,PA Altin,A Amato,C Anand,S Anand,A Ananyeva,SB Anderson,WG Anderson,T Andrade,N Andres,T Andrić,SV Angelova,S Ansoldi,JM Antelis,S Antier,S Appert,K Arai,MC Araya,JS Areeda,M Arène,N Arnaud,SM Aronson,KG Arun,Y Asali,G Ashton,M Assiduo,SM Aston,P Astone,F Aubin,C Austin,S Babak,F Badaracco,MKM Bader,C Badger,S Bae,AM Baer,S Bagnasco,Y Bai,J Baird,M Ball,G Ballardin,SW Ballmer,A Balsamo,G Baltus,S Banagiri,D Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,R Bassiri,A Basti,M Bawaj,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,M Bejger,I Belahcene,V Benedetto,D Beniwal,TF Bennett,JD Bentley,M Benyaala,F Bergamin,BK Berger,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare,U Bhardwaj,D Bhattacharjee,S Bhaumik,IA Bilenko,G Billingsley,S Bini,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,M-A Bizouard,JK Blackburn,CD Blair,DG Blair,RM Blair,F Bobba,N Bode,M Boer,G Bogaert,M Boldrini,LD Bonavena,F Bondu,E Bonilla,R Bonnand,P Booker,BA Boom,R Bork,V Boschi,N Bose,S Bose,V Bossilkov,V Boudart,Y Bouffanais,A Bozzi,C Bradaschia,PR Brady,A Bramley,A Branch,M Branchesi,JE Brau,M Breschi,T Briant,JH Briggs,A Brillet,M Brinkmann

Journal

Physical Review D

Published Date

2024/1/5

The second Gravitational-Wave Transient Catalog, GWTC-2, reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15∶ 00 UTC and 1 October 2019 15∶ 00 UTC. Here, we present GWTC-2.1, which reports on a deeper list of candidate events observed over the same period. We analyze the final version of the strain data over this period with improved calibration and better subtraction of excess noise, which has been publicly released. We employ three matched-filter search pipelines for candidate identification, and estimate the probability of astrophysical origin for each candidate event. While GWTC-2 used a false alarm rate threshold of 2 per year, we include in GWTC-2.1, 1201 candidates that pass a false alarm rate threshold of 2 per day. We calculate the source properties of a subset of 44 high-significance candidates that have a …

arXiv: Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo

Authors

AG Abac,ML Chiofalo,G Nieradka,R Pegna,C North,R Bhandare,G Pierra,A Amato,JG Baier,D Chen,B Haskell,F Robinet,M Fyffe,M Arogeti,N Raza,DD White,E Payne,M Wright,K Johansmeyer,K Hayama,P-F Cohadon,CG Collette,D Sellers,S Hoang,V Sipala,H Heitmann,T O'Hanlon,B Edelman,G McCarrol,GS Bonilla,T Harder,TA Clarke,YT Huang,J Junker,M Hennig,N Hirata,J Portell,R McCarthy,M Weinert,Y-C Yang,R Poulton,G Ballardin,D Bankar,A Bianchi,M Montani,R Goetz,CD Panzer,X Chen,R Takahashi,J Lange,K Schouteden,A Sasli,LM Modafferi,ME Zucker,J O'Dell,D Lumaca,AP Spencer,M Millhouse,M Norman,MJ Szczepańczyk,S-C Hsu,ST Countryman,C Chatterjee,AL James,E Chassande-Mottin,M Tacca,FJ Raab,TR Saravanan,VP Mitrofanov,S Bernuzzi,C Adamcewicz,L Conti,J Golomb,X Li,ERG von Reis,J Woehler,G Bogaert,F Fidecaro,B Shen,JM Ezquiaga,V Juste,S Sachdev,JD Bentley,YA Kas-danouche,R Sturani,M Toscani,K Takatani,D Beniwal,U Dupletsa,F Glotin,Y Lee,R Bhatt,A Couineaux,M Wade,N Kanda,J Novak,S Bini,I Ferrante,RA Alfaidi,N Johny,LE Sanchez,J Heinze,J Zhang,M Kinley-Hanlon,M Pegoraro,A Van de Walle,T Sainrat,NN Janthalur,A Trovato,A Romero,K Tomita,DE McClelland,B Fornal,M Heurs,AM Gretarsson,ND Koliadko,A Chincarini,BB Lane,AE Romano,M Martinez,V Fafone,FY Khalili,F Linde,C Messick,A Heffernan,J Gargiulo,V JaberianHamedan,SW Reid,D Moraru,D Pathak,M Iwaya,G Grignani,T Karydas,K AultONeal,SA Pai,IM Pinto,KW Chung,C Palomba,J Tissino,T Klinger,Ll M Mir,K Kwan,JK Katsuren,TP Lott,C Posnansky,S Di Pace,F Badaracco,NA Johnson,VA Martinez,A Ain

Published Date

2023/8/7

Despite the growing number of candidates and the insight they have provided, the astrophysical sites and processes that produce the observed merging binaries remain uncertain. Multiple viable scenarios exist. The binary black holes could have formed in an isolated stellar binary (eg, Bethe & Brown 1998; Dominik et al. 2015; Inayoshi et al. 2017; Marchant et al. 2016; de Mink & Mandel 2016; Gallegos-Garcia et al. 2021), via dynamical interactions in dense stellar clusters (eg, Portegies Zwart & McMillan 2000; Banerjee et al. 2010; Ziosi et al. 2014; Morscher et al. 2015; Mapelli 2016; Rodriguez et al. 2016a; Askar et al. 2017) or triple systems (eg, Antonini et al. 2017; Martinez et al. 2020; Vigna-Gómez et al. 2021), or via gas capture in the disks of active galactic nuclei (AGN; eg, McKernan et al. 2012; Bartos et al. 2017; Fragione et al. 2019; Tagawa et al. 2020).

Quintom cosmology from an effective theory

Authors

Ricardo Escobedo,Roberto Santos-Silva,Rafael Hernández-Jiménez,Claudia Moreno

Journal

arXiv preprint arXiv:2312.10443

Published Date

2023/12/16

In this article we analyze an effective action derived from a 7-dimensional theory that, upon dimensional reduction, it transforms into an effective 4-dimensional action. Such resulting effective action involves a generic metric; however, we study a cosmological model described by a de Sitter universe, with a Hubble constant . We compute the barotropic parameter to analyze our solutions. Three different upshots are presented, where this model can transit from quintessence to the phantom regimes, crossing the theoretical phantom divide line. Thus the effective action represents a quintom scenario.

A search for distinctive footprints of compact binary coalescence within alternatives theories of gravity

Authors

Alejandro Casallas-Lagos,Claudia Moreno,Javier M Antelis,Rafael Hernández-Jiménez

Published Date

2023/5

In this review we examine the amplitude intensity associated to tensorial and non-tensorial polarization modes generated by binary systems at their inspiral stage, within the alternative theories of gravity of Brans–Dicke, Rosen, and Lightman–Lee. This study is performed without making an explicit use of the Transverse Traceless gauge of the General Relativity approach, and at the Newtonian limit. Consequently such additional polarization modes appear (non-tensorial) due to additional degrees of freedom in modified theories of gravitation. We model and compare the different polarization modes and strain signals for each scheme varying the sky location. Our analysis allows us to identify the locations where these modes are more intense, and, therefore susceptible to being identified for the future interferometer detector network. This gives rise to a framework in which the amplitude and the intensity of all …

Search for eccentric black hole coalescences during the third observing run of LIGO and virgo

Authors

AG Abac,R Abbott,H Abe,F Acernese,K Ackley,C Adamcewicz,S Adhicary,N Adhikari,RX Adhikari,VK Adkins,VB Adya,C Affeldt,D Agarwal,M Agathos,OD Aguiar,I Aguilar,L Aiello,A Ain,P Ajith,T Akutsu,S Albanesi,RA Alfaidi,A Al-Jodah,C Alléné,A Allocca,M Almualla,PA Altin,S Álvarez-López,A Amato,L Amez-Droz,A Amorosi,S Anand,A Ananyeva,R Andersen,SB Anderson,WG Anderson,M Andia,M Ando,T Andrade,N Andres,M Andrés-Carcasona,T Andrić,S Ansoldi,JM Antelis,S Antier,M Aoumi,T Apostolatos,EZ Appavuravther,S Appert,SK Apple,K Arai,A Araya,MC Araya,JS Areeda,N Aritomi,F Armato,N Arnaud,M Arogeti,SM Aronson,KG Arun,G Ashton,Y Aso,M Assiduo,S Melo,SM Aston,P Astone,F Aubin,K AultONeal,S Babak,A Badalyan,F Badaracco,C Badger,S Bae,S Bagnasco,Y Bai,JG Baier,R Bajpai,T Baka,M Ball,G Ballardin,SW Ballmer,G Baltus,S Banagiri,B Banerjee,D Bankar,P Baral,JC Barayoga,J Barber,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,SD Barthelmy,MA Barton,I Bartos,S Basak,A Basalaev,R Bassiri,A Basti,M Bawaj,P Baxi,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,F Beirnaert,M Bejger,AS Bell,V Benedetto,D Beniwal,W Benoit,JD Bentley,M Ben Yaala,S Bera,M Berbel,F Bergamin,BK Berger,S Bernuzzi,M Beroiz,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,N Bevins,R Bhandare,AV Bhandari,U Bhardwaj,R Bhatt,D Bhattacharjee,S Bhaumik,A Bianchi,IA Bilenko,M Bilicki,G Billingsley,A Binetti,S Bini,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,M Bitossi,M-A Bizouard,JK Blackburn

Journal

arXiv preprint arXiv:2308.03822

Published Date

2023/8/7

Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass ) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities at Gpc yr at 90\% confidence level.

GWTC-3: compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run

Authors

Richard Abbott,TD Abbott,F Acernese,K Ackley,C Adams,N Adhikari,RX Adhikari,VB Adya,C Affeldt,D Agarwal,M Agathos,Kazuhiro Agatsuma,N Aggarwal,OD Aguiar,L Aiello,A Ain,P Ajith,S Akcay,T Akutsu,S Albanesi,A Allocca,PA Altin,A Amato,C Anand,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Ando,T Andrade,N Andres,T Andrić,SV Angelova,S Ansoldi,JM Antelis,S Antier,S Appert,Koji Arai,Koya Arai,Y Arai,S Araki,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,M Arogeti,SM Aronson,KG Arun,H Asada,Y Asali,G Ashton,Y Aso,M Assiduo,SM Aston,P Astone,F Aubin,C Austin,S Babak,F Badaracco,MKM Bader,C Badger,S Bae,Y Bae,AM Baer,S Bagnasco,Y Bai,L Baiotti,J Baird,R Bajpai,M Ball,G Ballardin,SW Ballmer,A Balsamo,G Baltus,S Banagiri,D Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,R Bassiri,A Basti,M Bawaj,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,M Bejger,I Belahcene,V Benedetto,D Beniwal,TF Bennett,JD Bentley,M BenYaala,F Bergamin,BK Berger,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare,U Bhardwaj,D Bhattacharjee,S Bhaumik,IA Bilenko,G Billingsley,S Bini,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,M-A Bizouard,JK Blackburn,CD Blair,DG Blair,RM Blair,F Bobba,N Bode,M Boer,G Bogaert,M Boldrini,LD Bonavena,F Bondu,E Bonilla,R Bonnand,P Booker,BA Boom,R Bork,V Boschi,N Bose,S Bose,V Bossilkov

Journal

Physical Review X

Published Date

2023/12/4

The third Gravitational-Wave Transient Catalog (GWTC-3) describes signals detected with Advanced LIGO and Advanced Virgo up to the end of their third observing run. Updating the previous GWTC-2.1, we present candidate gravitational waves from compact binary coalescences during the second half of the third observing run (O3b) between 1 November 2019, 15∶ 00 Coordinated Universal Time (UTC) and 27 March 2020, 17∶ 00 UTC. There are 35 compact binary coalescence candidates identified by at least one of our search algorithms with a probability of astrophysical origin p astro> 0.5. Of these, 18 were previously reported as low-latency public alerts, and 17 are reported here for the first time. Based upon estimates for the component masses, our O3b candidates with p astro> 0.5 are consistent with gravitational-wave signals from binary black holes or neutron-star–black-hole binaries, and we identify …

Characterizing the gravitational wave temporal evolution of the gmode fundamental resonant frequency for a core collapse supernova: A neural network approach

Authors

Alejandro Casallas Lagos,Javier M Antelis,Claudia Moreno,Michele Zanolin,Anthony Mezzacappa,Marek J Szczepańczyk

Journal

arXiv preprint arXiv:2304.11498

Published Date

2023/4/22

We present a methodology based on the implementation of a fully connected neural network to estimate the gravitational wave (GW) temporal evolution of the gmode fundamental resonant frequency for a Core Collapse Supernova (CCSN). To perform the estimation, we construct a training data set, using synthetic waveforms, that serves to train the ML algorithm, and then use several CCSN waveforms to test the model. According to the results obtained from the implementation of our model, we provide numerical evidence to support the classification of progenitors according to their degree of rotation. The relative error associated with the estimate of the slope of the resonant frequency versus time for the GW from CCSN signals is within for the tested candidates included in this study. This method of classification does not require priors or templates, it is based on physical modelling, and can be combined with studies that classify the progenitor with other physical features.

Determination of the angular momentum of the Kerr black hole from equatorial geodesic motion

Authors

Laura O Villegas,Eduardo Ramírez-Codiz,Víctor Jaramillo,Juan Carlos Degollado,Claudia Moreno,Darío Núñez,Fernando J Romero-Cruz

Journal

Journal of Cosmology and Astroparticle Physics

Published Date

2023/8/7

We present a method to determine the angular momentum of a black hole based on observations of the trajectories of the bodies in the Kerr spacetime. We use the Hamilton equations to describe the dynamics of a particle and present results for equatorial trajectories, obtaining an algebraic equation for the magnitude of the black hole's angular momentum with coefficients given by observable quantities. We tailor a numerical code to solve the dynamical equations and use it to generate synthetic data. We apply the method in some representative examples, obtaining the parameters of the trajectories as well as the black hole's angular momentum in good agreement with the input data.

Geometrical scalar back-reaction effects in inflation

Authors

Rafael Hernández-Jiménez,Claudia Moreno

Journal

Physics of the Dark Universe

Published Date

2023/12/1

Starting with the Lagrangian formulation of General Relativity, we will conduct an investigation into the production of spacetime waves, due to a geometric boundary term of a closed extended manifold, within the tensor and scalar sectors. This scheme will be studied in an inflationary universe. We explore two distinct scenarios: Cold Inflation and Warm Inflation. The scalar modes Z k R and Z k I oscillate within the horizon, and become constant at (or right after) horizon crossing k≃ a H and they remain so when radiation starts to dominate. The larger k/k 0 the Z k’s amplitudes increase too. In general, we can notice that radiation reduces the size of the Z k’s amplitudes, hence yielding smaller signals of such modes. The tensor sector shows an irregular journey due to their abrupt growth just as they cross the horizon. This in turn hinders any probable observational hint or signal. However, we expect that this novel …

Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

Authors

R Abbott,H Abe,F Acernese,K Ackley,S Adhicary,N Adhikari,RX Adhikari,VK Adkins,VB Adya,C Affeldt,D Agarwal,M Agathos,OD Aguiar,L Aiello,A Ain,P Ajith,T Akutsu,S Albanesi,RA Alfaidi,C Alléné,A Allocca,PA Altin,A Amato,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Ando,T Andrade,N Andres,M Andrés-Carcasona,T Andrić,S Ansoldi,JM Antelis,S Antier,T Apostolatos,EZ Appavuravther,S Appert,SK Apple,K Arai,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,M Arogeti,SM Aronson,H Asada,G Ashton,Y Aso,M Assiduo,S Melo,SM Aston,P Astone,F Aubin,K AultONeal,S Babak,F Badaracco,C Badger,S Bae,Y Bae,S Bagnasco,Y Bai,JG Baier,J Baird,R Bajpai,T Baka,M Ball,G Ballardin,SW Ballmer,G Baltus,S Banagiri,B Banerjee,D Bankar,JC Barayoga,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,S Basak,R Bassiri,A Basti,M Bawaj,JC Bayley,M Bazzan,B Bécsy,VM Bedakihale,F Beirnaert,M Bejger,I Belahcene,AS Bell,V Benedetto,D Beniwal,W Benoit,JD Bentley,M BenYaala,S Bera,M Berbel,F Bergamin,BK Berger,S Bernuzzi,M Beroiz,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare,AV Bhandari,U Bhardwaj,R Bhatt,D Bhattacharjee,S Bhaumik,A Bianchi,IA Bilenko,M Bilicki,G Billingsley,S Bini,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,M-A Bizouard,JK Blackburn,CD Blair,DG Blair,RM Blair,F Bobba,N Bode,M Boër,G Bogaert,M Boldrini,GN Bolingbroke,LD Bonavena,R Bondarescu,F Bondu,E Bonilla,R Bonnand,P Booker

Journal

arXiv preprint arXiv:2304.08393

Published Date

2023/4/17

Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects.

Convolutional neural network regression to estimate the mass parameter of astrophysical binary black hole systems

Authors

Andres Benjamin Antelis Moreno,Claudia Moreno

Published Date

2023/7/3

In this paper we propose the use of a deep learning based model for inferring astrophysical information of binary black hole (BBH) systems from observed gravitational wave (GW) signals. We focused in estimating the total mass of BBH systems using a convolutional neural network regression (CNNR) model. We built a large dataset of 2D images representing the time-frequency evolution of BBH GW signals which are embedded in noise, where for each generated image the real total mass is known. . A hold-out cross-validation procedure was performed to train and evaluate five architectures of CNNR models with different number and sizes of kernels. The results indicate that the proposed deep neural network models for regression provide reliable point-parameter estimations with high accuracy. This estimation parameter approach can be easily extended to reconstruct more parameters from astrophysical sources directly from obseved GW events.

Asymptotic expansions for the maximum likelihood estimation errors of the rotating parameter of the gravitational wave from core-collapse supernovae

Authors

Laura O Villegas,Claudia Moreno,Michael A Pajkos,Michele Zanolin,Javier M Antelis

Journal

arXiv preprint arXiv:2304.01267

Published Date

2023/4/3

In this work, we obtain the error estimate of the rotation parameter from the core bounce phase of the characteristic gravitational wave signal of a rapidly rotating core collapse supernova (CCSN). We quantify the error with asymptotic expansions of the covariance of a Maximum Likelihood Estimator (MLE) in terms of inverse powers of Signal-Noise Ratio (SNR), this method has been previously applied to parameter estimation for compact binary coalescences. When the second order of this expansion is negligible, it indicates that the first order is a good approximation of the error that will have a matching filter approach when estimating . The analysis indicates that we should be able to resolve the presence of rotation for the galactic and nearby extragalactic progenitors. We show that the estimation error can be as small as a few percent and is larger for small values of .

Characterizing the temporal evolution of the high-frequency gravitational wave emission for a core collapse supernova with laser interferometric data: A neural network approach

Authors

Alejandro Casallas-Lagos,Javier M Antelis,Claudia Moreno,Michele Zanolin,Anthony Mezzacappa,Marek J Szczepańczyk

Journal

Physical Review D

Published Date

2023/10/11

We present a methodology based on the implementation of a fully connected neural network algorithm to estimate the temporal evolution of the high-frequency gravitational wave emission for a core collapse supernova (CCSN). For this study, we selected a fully connected deep neural network (DNN) regression model because it can learn both linear and nonlinear relationships between the input and output data, it is more appropriate for handling large-dimensional input data, and it offers high performance at a low computational cost. To train the Machine Learning (ML) algorithm, we construct a training dataset using synthetic waveforms, and several CCSN waveforms are used to test the algorithm. We performed a first-order estimation of the high-frequency gravitational wave emission on real interferometric LIGO data from the second half of the third observing run (O3b) with a two detector network (L1 and H1). The …

Emission of spacetime waves from the partial collapse of a compact object

Authors

Emmanuel Avila-Vargas,Claudia Moreno,Rafael Hernández-Jiménez

Journal

Journal of Mathematical Physics

Published Date

2023/6/6

In this work, we describe the partial collapse of a compact object and the emission of spacetime waves as a result of back-reaction effects. As a source mass term, we propose a non-smooth continuous function that describes a mass-loss, and we then obtain the solution of such setting. We present three distinct examples of the evolution of the norm∣ Rnl (t, r∗)∣ in terms of t, and four different results are shown for the parameter l= 1, 2, 5, 10; here, r∗ is the fixed radius of an observer outside the compact object. In all cases, the decay behavior is actually present at t≫ 1 and becomes more evident for larger l. In addition, for the results that have smaller l’s, their amplitudes are larger when the asymptotic character of∣ Rnl (t, r∗)∣ clearly appears. Finally, the farther away an observer is set, the fewer oscillations are perceived; however, from our particular fixed set of parameters, the best spot to observe the wiggles of the …

Population of merging compact binaries inferred using gravitational waves through GWTC-3

Authors

R Abbott,TD Abbott,F Acernese,K Ackley,C Adams,N Adhikari,RX Adhikari,VB Adya,C Affeldt,D Agarwal,M Agathos,K Agatsuma,N Aggarwal,Odylio Denys de Aguiar,L Aiello,A Ain,P Ajith,T Akutsu,PF De Alarcón,S Akcay,S Albanesi,A Allocca,PA Altin,A Amato,C Anand,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Ando,T Andrade,N Andres,T Andrić,SV Angelova,S Ansoldi,JM Antelis,S Antier,F Antonini,S Appert,Koji Arai,Koya Arai,Y Arai,S Araki,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,M Arogeti,SM Aronson,KG Arun,H Asada,Y Asali,G Ashton,Y Aso,M Assiduo,SM Aston,P Astone,F Aubin,C Austin,Stanislav Babak,F Badaracco,MKM Bader,C Badger,S Bae,Y Bae,AM Baer,S Bagnasco,Y Bai,L Baiotti,J Baird,R Bajpai,M Ball,G Ballardin,SW Ballmer,A Balsamo,G Baltus,S Banagiri,D Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,R Bassiri,A Basti,M Bawaj,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,M Bejger,I Belahcene,V Benedetto,D Beniwal,TF Bennett,JD Bentley,M Benyaala,F Bergamin,BK Berger,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare,U Bhardwaj,D Bhattacharjee,S Bhaumik,IA Bilenko,G Billingsley,S Bini,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,M-A Bizouard,JK Blackburn,CD Blair,DG Blair,RM Blair,F Bobba,N Bode,M Boer,G Bogaert,M Boldrini,LD Bonavena,François Bondu,E Bonilla,R Bonnand,P Booker,BA Boom,R Bork,V Boschi,N Bose

Journal

Physical Review X

Published Date

2023/3/29

We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 (GWTC-3) contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron star–black hole mergers. We infer the binary neutron star merger rate to be between 10 and 1700 Gpc− 3 yr− 1 and the neutron star–black hole merger rate to be between 7.8 and 140 Gpc− 3 yr− 1, assuming a constant rate density in the comoving frame and taking the union of 90% credible intervals for methods used in this work. We infer the binary black hole merger rate, allowing for evolution with redshift, to be between 17.9 and 44 Gpc− 3 yr− 1 at a fiducial redshift (z= 0.2). The rate of binary black hole mergers is observed to increase with redshift at a rate proportional …

Search for gravitational waves associated with fast radio bursts detected by CHIME/FRB during the LIGO–Virgo observing run O3a

Authors

R Abbott,TD Abbott,F Acernese,K Ackley,C Adams,N Adhikari,RX Adhikari,VB Adya,C Affeldt,D Agarwal,M Agathos,K Agatsuma,N Aggarwal,OD Aguiar,L Aiello,A Ain,P Ajith,T Akutsu,S Albanesi,A Allocca,PA Altin,A Amato,C Anand,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Ando,T Andrade,N Andres,T Andrić,SV Angelova,S Ansoldi,JM Antelis,S Antier,S Appert,Koji Arai,Koya Arai,Y Arai,S Araki,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,SM Aronson,KG Arun,H Asada,Y Asali,G Ashton,Y Aso,M Assiduo,SM Aston,P Astone,F Aubin,C Austin,S Babak,F Badaracco,MKM Bader,C Badger,S Bae,Y Bae,AM Baer,S Bagnasco,Y Bai,L Baiotti,J Baird,R Bajpai,M Ball,G Ballardin,SW Ballmer,A Balsamo,G Baltus,S Banagiri,D Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,R Bassiri,A Basti,M Bawaj,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,M Bejger,I Belahcene,V Benedetto,D Beniwal,TF Bennett,JD Bentley,M Benyaala,F Bergamin,BK Berger,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare,U Bhardwaj,D Bhattacharjee,S Bhaumik,IA Bilenko,G Billingsley,S Bini,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,M-A Bizouard,JK Blackburn,CD Blair,DG Blair,RM Blair,F Bobba,N Bode,M Boer,G Bogaert,M Boldrini,LD Bonavena,F Bondu,E Bonilla,R Bonnand,P Booker,BA Boom,R Bork,V Boschi,N Bose,S Bose,V Bossilkov,V Boudart,Y Bouffanais

Journal

The Astrophysical Journal

Published Date

2023/10/1

Fast radio bursts (FRBs) are millisecond duration radio pulses that have been observed out to cosmological distances, several with inferred redshifts greater than unity (Lorimer et al. 2007; Cordes & Chatterjee 2019; Petroff et al. 2019). Although intensely studied for more than a decade, the emission mechanisms and progenitor populations of FRBs are still one of the outstanding questions in astronomy. Some FRBs have been shown to repeat (Amiri et al. 2019a; CHIME/FRB Collaboration et al. 2019; Kumar et al. 2019), and the recent association of an FRB with the Galactic magnetar SGR 1935+ 2154 proves that magnetars can produce FRBs (Bochenek et al. 2020; CHIME/FRB Collaboration et al. 2020). Alternative progenitors and mechanisms to produce nonrepeating FRBs are still credible and have so far not been ruled out (Zhang 2020a). Data currently suggest that both repeating and nonrepeating classes of …

See List of Professors in Claudia Moreno University(Universidad de Guadalajara)

Claudia Moreno FAQs

What is Claudia Moreno's h-index at Universidad de Guadalajara?

The h-index of Claudia Moreno has been 28 since 2020 and 29 in total.

What are Claudia Moreno's top articles?

The articles with the titles of

arXiv: Ultralight vector dark matter search using data from the KAGRA O3GK run

Ultralight vector dark matter search using data from the KAGRA O3GK run

A joint Fermi-GBM and Swift-BAT analysis of Gravitational-wave candidates from the third Gravitational-wave Observing Run

Post-Newtonian gravitational waves with cosmological constant from the Einstein-Hilbert theory

GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run

arXiv: Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo

Quintom cosmology from an effective theory

A search for distinctive footprints of compact binary coalescence within alternatives theories of gravity

...

are the top articles of Claudia Moreno at Universidad de Guadalajara.

What are Claudia Moreno's research interests?

The research interests of Claudia Moreno are: General Relativity, Gravitational Waves, Cosmology

What is Claudia Moreno's total number of citations?

Claudia Moreno has 3,664 citations in total.

    academic-engine

    Useful Links