Measurement of the double-differential muon-neutrino charged-current inclusive cross section in the NOvA near detector

Physical Review D

Published On 2023/3/27

We report cross-section measurements of the final-state muon kinematics for ν μ charged-current interactions in the NOvA near detector using an accumulated 8.09× 10 20 protons on target in the NuMI beam. We present the results as a double-differential cross section in the observed outgoing muon energy and angle, as well as single-differential cross sections in the derived neutrino energy, E ν, and square of the four-momentum transfer, Q 2. We compare the results to inclusive cross-section predictions from various neutrino event generators via χ 2 calculations using a covariance matrix that accounts for bin-to-bin correlations of systematic uncertainties. These comparisons show a clear discrepancy between the data and each of the tested predictions at forward muon angle and low Q 2, indicating a missing suppression of the cross section in current neutrino-nucleus scattering models.

Journal

Physical Review D

Published On

2023/3/27

Volume

107

Issue

5

Page

052011

Authors

Xiao-Fei Li (李小飞)

Xiao-Fei Li (李小飞)

University of Electronic Science and Technology of China

Position

H-Index(all)

309

H-Index(since 2020)

200

I-10 Index(all)

0

I-10 Index(since 2020)

0

Citation(all)

0

Citation(since 2020)

0

Cited By

0

Research Interests

Nanoelectronics

Spintronics

Nanophotonics

Carl Bromberg

Carl Bromberg

Michigan State University

Position

Professor of Physics

H-Index(all)

191

H-Index(since 2020)

80

I-10 Index(all)

0

I-10 Index(since 2020)

0

Citation(all)

0

Citation(since 2020)

0

Cited By

0

Research Interests

Physics

University Profile Page

Bipul Bhuyan

Bipul Bhuyan

Indian Institute of Technology Guwahati

Position

H-Index(all)

140

H-Index(since 2020)

75

I-10 Index(all)

0

I-10 Index(since 2020)

0

Citation(all)

0

Citation(since 2020)

0

Cited By

0

Research Interests

Particle Physics

Pierre Baldi

Pierre Baldi

University of California, Irvine

Position

Professor

H-Index(all)

132

H-Index(since 2020)

85

I-10 Index(all)

0

I-10 Index(since 2020)

0

Citation(all)

0

Citation(since 2020)

0

Cited By

0

Research Interests

Artificial Intelligence

Deep Learning

Bioinformatics

Physics

Mathematics

University Profile Page

Norm Buchanan

Norm Buchanan

Colorado State University

Position

Associate Professor of Physics

H-Index(all)

131

H-Index(since 2020)

54

I-10 Index(all)

0

I-10 Index(since 2020)

0

Citation(all)

0

Citation(since 2020)

0

Cited By

0

Research Interests

High Energy Particle Physics

University Profile Page

Gary Feldman

Gary Feldman

Harvard University

Position

Frank B. Baird Jr. Professor of Science

H-Index(all)

111

H-Index(since 2020)

45

I-10 Index(all)

0

I-10 Index(since 2020)

0

Citation(all)

0

Citation(since 2020)

0

Cited By

0

Research Interests

Elementary Particle Physics

University Profile Page

Alec Habig

Alec Habig

University of Minnesota-Twin Cities

Position

Professor of Physics

H-Index(all)

101

H-Index(since 2020)

54

I-10 Index(all)

0

I-10 Index(since 2020)

0

Citation(all)

0

Citation(since 2020)

0

Cited By

0

Research Interests

Physics

Astrophysics

Neutrinos

Supernova

Jianming Bian

Jianming Bian

University of California, Irvine

Position

H-Index(all)

81

H-Index(since 2020)

63

I-10 Index(all)

0

I-10 Index(since 2020)

0

Citation(all)

0

Citation(since 2020)

0

Cited By

0

Research Interests

Neutrino physics

Electron Collider Physics

University Profile Page

Marvin Marshak

Marvin Marshak

University of Minnesota-Twin Cities

Position

Professor of Physics

H-Index(all)

77

H-Index(since 2020)

45

I-10 Index(all)

0

I-10 Index(since 2020)

0

Citation(all)

0

Citation(since 2020)

0

Cited By

0

Research Interests

elementary particle physics

Other Articles from authors

Bipul Bhuyan

Bipul Bhuyan

Indian Institute of Technology Guwahati

arXiv preprint arXiv:2402.02580

Search for a heavy neutral lepton that mixes predominantly with the tau neutrino

We report a search for a heavy neutral lepton (HNL) that mixes predominantly with . The search utilizes data collected with the Belle detector at the KEKB asymmetric energy collider. The data sample was collected at and just below the center-of-mass energies of the and resonances and has an integrated luminosity of , corresponding to events. We search for production of the HNL (denoted ) in the decay followed by its decay via . The search focuses on the parameter-space region in which the HNL is long lived, so that the originate from a common vertex that is significantly displaced from the collision point of the KEKB beams. Consistent with the expected background yield, one event is observed in the data sample after application of all the event-selection criteria. We report limits on the mixing parameter of the HNL with the neutrino as a function of the HNL mass.

Rukmani Mohanta

Rukmani Mohanta

University of Hyderabad

Physical Review D

Correlating neutrino magnetic moment and scalar triplet dark matter to enlighten XENONnT bounds in a type II radiative seesaw model

We investigate neutrino magnetic moment, triplet scalar dark matter in a type II radiative seesaw scenario. With three vectorlike fermion doublets and two scalar triplets, we provide a loop level setup for the electromagnetic vertex of neutrinos. All the scalar multiplet components constitute the total dark matter abundance of the Universe and also their scattering cross section with detector lie below the experimental upper limit. Using the consistent parameter space in dark matter domain, we obtain light neutrino mass in sub-eV scale and also magnetic moment in the desired range. We further derive the constraints on neutrino transition magnetic moments, consistent with the XENONnT limit.

Bipul Bhuyan

Bipul Bhuyan

Indian Institute of Technology Guwahati

arXiv preprint arXiv:2312.03130

The DUNE Far Detector Vertical Drift Technology, Technical Design Report

DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are …

Enrique Arrieta Diaz

Enrique Arrieta Diaz

Universidad del Magdalena

arXiv preprint arXiv:2403.03212

Performance of a modular ton-scale pixel-readout liquid argon Time Projection Chamber

The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements, and provide comparisons to detector simulations.

Pierre Baldi

Pierre Baldi

University of California, Irvine

arXiv preprint arXiv:2403.05129

Unraveling the Molecular Magic: AI Insights on the Formation of Extraordinarily Stretchable Hydrogels

The deliberate manipulation of ammonium persulfate, methylenebisacrylamide, dimethyleacrylamide, and polyethylene oxide concentrations resulted in the development of a hydrogel with an exceptional stretchability, capable of extending up to 260 times its original length. This study aims to elucidate the molecular architecture underlying this unique phenomenon by exploring potential reaction mechanisms, facilitated by an artificial intelligence prediction system. Artificial intelligence predictor introduces a novel approach to interlinking two polymers, involving the formation of networks interconnected with linear chains following random chain scission. This novel configuration leads to the emergence of a distinct type of hydrogel, herein referred to as a "Span Network." Additionally, Fourier-transform infrared spectroscopy (FTIR) is used to investigate functional groups that may be implicated in the proposed mechanism, with ester formation confirmed among numerous hydroxyl end groups obtained from chain scission of PEO and carboxyl groups formed on hydrogel networks.

Anna Morozova

Anna Morozova

Universidade de Coimbra

Acta Materialia

Triple junction disclinations in severely deformed Cu–0.4% Mg alloys

Stress fields arising from triple junction disclinations (TJDs) play a significant role in the microstructure evolution during the plastic deformation of metals. The calculation of TJD strengths from grain orientation data was developed by Bollmann more than 50 years ago, but so far applied only to collections of a few grains. Developed here is a new methodology for calculating TJD strengths and the associated stress fields in large polycrystalline assemblies using experimental electron back-scattered diffraction (EBSD) maps. The methodology combines Bollmann’s approach with a representation of materials as cell complexes. It is computationally efficient and allows for obtaining the spatial distribution of TJD strengths from EBSD images containing thousands of grains. Analysed are the fraction, distribution, and strengths of TJDs within statistically representative microstructures of Cu–0.4%Mg alloy subjected to severe …

Pierre Baldi

Pierre Baldi

University of California, Irvine

Deep Learning Over-Parameterization: the Shallow Fallacy

A major tenet of conventional wisdom dictates that models should not be over-parameterized: the number of free parameters should not exceed the number of training data points. This tenet originates from centuries of shallow learning, primarily in the form of linear or logistic regression. It is routinely applied to all kinds of data analyses and modeling and even to infer properties of the brain. However, through a variety of precise mathematical examples, we show that this conventional wisdom is completely wrong as soon as one moves from shallow to deep learning. In particular, we construct sequences of both linear and non-linear deep learning models whose number of parameters can grow to infinity, while the training set can remain very small (eg a single example). In deep models, the parameter space is partitioned into large equivalence classes. Learning can be viewed as a communication process where information is communicated from the data to the synaptic weights. The information in the training data only needs to specify an equivalence class of the parameters, and not the exact parameter values. As such, the number of training examples can be significantly smaller than the number of free parameters.

Pierre Baldi

Pierre Baldi

University of California, Irvine

Bulletin of the American Physical Society

Boosted and Resolved Jet Assignment using Symmetry-Preserving Attention Networks in Nonresonant Multi-Higgs-Boson Events

F14. 00006: Boosted and Resolved Jet Assignment using Symmetry-Preserving Attention Networks in Nonresonant Multi-Higgs-Boson Events*

Linda Cremonesi

Linda Cremonesi

University College London

arXiv preprint arXiv:2403.03212

Performance of a modular ton-scale pixel-readout liquid argon Time Projection Chamber

The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements, and provide comparisons to detector simulations.

Pierre Baldi

Pierre Baldi

University of California, Irvine

Advances in Neural Information Processing Systems

AI for Interpretable Chemistry: Predicting Radical Mechanistic Pathways via Contrastive Learning

Deep learning-based reaction predictors have undergone significant architectural evolution. However, their reliance on reactions from the US Patent Office results in a lack of interpretable predictions and limited generalizability to other chemistry domains, such as radical and atmospheric chemistry. To address these challenges, we introduce a new reaction predictor system, RMechRP, that leverages contrastive learning in conjunction with mechanistic pathways, the most interpretable representation of chemical reactions. Specifically designed for radical reactions, RMechRP provides different levels of interpretation of chemical reactions. We develop and train multiple deep-learning models using RMechDB, a public database of radical reactions, to establish the first benchmark for predicting radical reactions. Our results demonstrate the effectiveness of RMechRP in providing accurate and interpretable predictions of radical reactions, and its potential for various applications in atmospheric chemistry.

Alec Habig

Alec Habig

University of Minnesota-Twin Cities

The Design and Construction of the Chips Water Cherenkov Neutrino Detector

CHIPS (CHerenkov detectors In mine PitS) was a prototype large-scale water Cherenkov detector located in northern Minnesota. The main aim of the R&D project was to demonstrate that construction costs of neutrino oscillation detectors could be reduced by at least an order of magnitude compared to other equivalent experiments. This article presents design features of the CHIPS detector along with details of the implementation and deployment of the prototype. While issues during and after the deployment of the detector prevented data taking, a number of key concepts and designs were successfully demonstrated.

Mathew Muether

Mathew Muether

Wichita State University

arXiv preprint arXiv:2403.07266

Search for CP-violating Neutrino Non-Standard Interactions with the NOvA Experiment

This Letter reports a search for charge-parity (CP) symmetry violating non-standard interactions (NSI) of neutrinos with matter using the NOvA Experiment, and examines their effects on the determination of the standard oscillation parameters. Data from and oscillation channels are used to measure the effect of the NSI parameters and . With 90% C.L. the magnitudes of the NSI couplings are constrained to be and . A degeneracy at is reported, and we observe that the presence of NSI limits sensitivity to the standard CP phase $\delta_{\tiny\text{CP}}$.

Nitish Nayak

Nitish Nayak

University of California, Irvine

The European Physical Journal C

Measurement of double-differential cross sections for mesonless charged-current muon neutrino interactions on argon with final-state protons using the MicroBooNE detector

Normalized double-differential cross sections for top quark pair () production are measured in pp collisions at a centre-of-mass energy of 8 with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 19.7. The measurement is performed in the dilepton final state. The cross section is determined as a function of various pairs of observables characterizing the kinematics of the top quark and system. The data are compared to calculations using perturbative quantum chromodynamics at next-to-leading and approximate next-to-next-to-leading orders. They are also compared to predictions of Monte Carlo event generators that complement fixed-order computations with parton showers, hadronization, and multiple-parton interactions. Overall agreement is observed with the predictions, which is improved when the latest global sets of proton parton distribution …

Jianming Bian

Jianming Bian

University of California, Irvine

Physical Review D

Measurement of the neutrino-oxygen neutral-current quasielastic cross section using atmospheric neutrinos in the SK-Gd experiment

We report the first measurement of the atmospheric neutrino-oxygen neutral-current quasielastic (NCQE) cross section in the gadolinium-loaded Super-Kamiokande (SK) water Cherenkov detector. In June 2020, SK began a new experimental phase, named SK-Gd, by loading 0.011% by mass of gadolinium into the ultrapure water of the SK detector. The introduction of gadolinium to ultrapure water has the effect of improving the neutron-tagging efficiency. Using a 552.2 day dataset from August 2020 to June 2022, we measure the NCQE cross section to be 0.74±0.22 (stat)− 0.15+ 0.85 (syst)× 10− 38 cm 2/oxygen in the energy range from 160 MeV to 10 GeV, which is consistent with the atmospheric neutrino-flux-averaged theoretical NCQE cross section and the measurement in the SK pure-water phase within the uncertainties. Furthermore, we compare the models of the nucleon-nucleus interactions in water and …

Zoya Vallari

Zoya Vallari

California Institute of Technology

arXiv preprint arXiv:2403.03212

Performance of a modular ton-scale pixel-readout liquid argon time projection chamber

The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements, and provide comparisons to detector simulations.

Mathew Muether

Mathew Muether

Wichita State University

arXiv preprint arXiv:2402.01568

Doping liquid argon with xenon in ProtoDUNE Single-Phase: effects on scintillation light

Doping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUNE-SP) at CERN, featuring 770 t of total liquid argon mass with 410 t of fiducial mass. The goal of the run was to measure the light and charge response of the detector to the addition of xenon, up to a concentration of 18.8 ppm. The main purpose was to test the possibility for reduction of non-uniformities in light collection, caused by deployment of photon detectors only within the anode planes. Light collection was analysed as a function of the xenon concentration, by using the pre-existing photon detection system (PDS) of ProtoDUNE-SP and an additional smaller set-up installed specifically for this run. In this paper we first summarize our current understanding of the argon-xenon energy transfer process and the impact of the presence of nitrogen in argon with and without xenon dopant. We then describe the key elements of ProtoDUNE-SP and the injection method deployed. Two dedicated photon detectors were able to collect the light produced by xenon and the total light. The ratio of these components was measured to be about 0.65 as 18.8 ppm of xenon were injected. We performed studies of the collection efficiency as a function of the distance between tracks and light detectors, demonstrating enhanced uniformity of response for the anode-mounted PDS …

Jianming Bian

Jianming Bian

University of California, Irvine

arXiv preprint arXiv:2403.06760

Performance of SK-Gd's Upgraded Real-time Supernova Monitoring System

Among multi-messenger observations of the next galactic core-collapse supernova, Super-Kamiokande (SK) plays a critical role in detecting the emitted supernova neutrinos, determining the direction to the supernova (SN), and notifying the astronomical community of these observations in advance of the optical signal. On 2022, SK has increased the gadolinium dissolved in its water target (SK-Gd) and has achieved a Gd concentration of 0.033%, resulting in enhanced neutron detection capability, which in turn enables more accurate determination of the supernova direction. Accordingly, SK-Gd's real-time supernova monitoring system (Abe te al. 2016b) has been upgraded. SK_SN Notice, a warning system that works together with this monitoring system, was released on December 13, 2021, and is available through GCN Notices (Barthelmy et al. 2000). When the monitoring system detects an SN-like burst of events, SK_SN Notice will automatically distribute an alarm with the reconstructed direction to the supernova candidate within a few minutes. In this paper, we present a systematic study of SK-Gd's response to a simulated galactic SN. Assuming a supernova situated at 10 kpc, neutrino fluxes from six supernova models are used to characterize SK-Gd's pointing accuracy using the same tools as the online monitoring system. The pointing accuracy is found to vary from 3-7 depending on the models. However, if the supernova is closer than 10 kpc, SK_SN Notice can issue an alarm with three-degree accuracy, which will benefit follow-up observations by optical telescopes with large fields of view.

Nitish Nayak

Nitish Nayak

University of California, Irvine

arXiv preprint arXiv:2402.19216

Inclusive cross section measurements in final states with and without protons for charged-current -Ar scattering in MicroBooNE

A detailed understanding of inclusive muon neutrino charged-current interactions on argon is crucial to the study of neutrino oscillations in current and future experiments using liquid argon time projection chambers. To that end, we report a comprehensive set of differential cross section measurements for this channel that simultaneously probe the leptonic and hadronic systems by dividing the channel into final states with and without protons. Measurements of the proton kinematics and proton multiplicity of the final state are also presented. For these measurements, we utilize data collected with the MicroBooNE detector from 6.4 protons on target from the Fermilab Booster Neutrino Beam at a mean neutrino energy of approximately 0.8 GeV. We present in detail the cross section extraction procedure, including the unfolding, and model validation that uses data to model comparisons and the conditional constraint formalism to detect mismodeling that may introduce biases to extracted cross sections that are larger than their uncertainties. The validation exposes insufficiencies in the overall model, motivating the inclusion of an additional data-driven reweighting systematic to ensure the accuracy of the unfolding. The extracted results are compared to a number of event generators and their performance is discussed with a focus on the regions of phase-space that indicate the greatest need for modeling improvements.

Marvin Marshak

Marvin Marshak

University of Minnesota-Twin Cities

arXiv preprint arXiv:2403.03212

Performance of a modular ton-scale pixel-readout liquid argon time projection chamber

The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements, and provide comparisons to detector simulations.

Rukmani Mohanta

Rukmani Mohanta

University of Hyderabad

The European Physical Society Conference on High Energy Physics

Vector leptoquark U_3: A possible solution to the recent discrepancy between NOvA and T2K results on CP violation

Vector leptoquark U_3: A possible solution to the recent discrepancy between NOvA and T2K results on CP violation - NASA/ADS Now on home page ads icon ads Enable full ADS view NASA/ADS Vector leptoquark U_3: A possible solution to the recent discrepancy between NOvA and T2K results on CP violation Mohanta, R. ; Majhi, R. ; Singha, DK ; Deepthi, KN Abstract Publication: The European Physical Society Conference on High Energy Physics Pub Date: March 2024 Bibcode: 2024epsc.confE.149M full text sources Publisher | © The SAO/NASA Astrophysics Data System adshelp[at]cfa.harvard.edu The ADS is operated by the Smithsonian Astrophysical Observatory under NASA Cooperative Agreement NNX16AC86A NASA logo Smithsonian logo Resources About ADS ADS Help What's New Careers@ADS Social @adsabs ADS Blog Project Switch to full ADS Is ADS down? (or is it just me...) Smithsonian …

Other articles from Physical Review D journal

Laurent Lellouch

Laurent Lellouch

Aix-Marseille Université

Physical Review D

Hadronic vacuum polarization: comparing lattice QCD and data-driven results in systematically improvable ways

The precision with which hadronic vacuum polarization (HVP) is obtained determines how accurately important observables, such as the muon anomalous magnetic moment a μ or the low-energy running of the electromagnetic coupling α, are predicted. The two most precise approaches for determining HVP are dispersive relations combined with e+ e−→ hadrons cross section data and lattice QCD. However, the results obtained in these two approaches display significant tensions, whose origins are not understood. Here we present a framework that sheds light on this issue and—if the two approaches can be reconciled—allows them to be combined. Via this framework, we test the hypothesis that the tensions can be explained by modifying the R-ratio in different intervals of center-of-mass energy s. As ingredients, we consider observables that have been precisely determined in both approaches. These are the …

Fuquan Wang

Fuquan Wang

University of Wisconsin-Madison

Physical Review D

Search for quantum black hole production in lepton+ jet final states using proton-proton collisions at s= 13 TeV with the ATLAS detector

A search for quantum black holes in electron+ jet and muon+ jet invariant mass spectra is performed with 140 fb− 1 of data collected by the ATLAS detector in proton-proton collisions at s= 13 TeV at the Large Hadron Collider. The observed invariant mass spectrum of lepton+ jet pairs is consistent with Standard Model expectations. Upper limits are set at 95% confidence level on the production cross section times branching fractions for quantum black holes decaying into a lepton and a quark in a search region with invariant mass above 2.0 TeV. The resulting quantum black hole lower mass threshold limit is 9.2 TeV in the Arkani-Hamed-Dimopoulos-Dvali model, and 6.8 TeV in the Randall-Sundrum model.

Christian Weber

Christian Weber

Technische Universität Berlin

Physical Review D

Search for quantum black hole production in lepton+ jet final states using proton-proton collisions at s= 13 TeV with the ATLAS detector

A search for quantum black holes in electron+ jet and muon+ jet invariant mass spectra is performed with 140 fb− 1 of data collected by the ATLAS detector in proton-proton collisions at s= 13 TeV at the Large Hadron Collider. The observed invariant mass spectrum of lepton+ jet pairs is consistent with Standard Model expectations. Upper limits are set at 95% confidence level on the production cross section times branching fractions for quantum black holes decaying into a lepton and a quark in a search region with invariant mass above 2.0 TeV. The resulting quantum black hole lower mass threshold limit is 9.2 TeV in the Arkani-Hamed-Dimopoulos-Dvali model, and 6.8 TeV in the Randall-Sundrum model.

Dariescu

Dariescu

Universitatea Alexandru Ioan Cuza din Iasi

Physical Review D

Charged particles in the background of the Kiselev solution in power-Maxwell electrodynamics

In this work we analyze the motion of charged particles in the background of the Kiselev geometry, which is considered here as an exact solution in the context of power-Maxwell electrodynamics. As it is well known, one can use either an electric ansatz or a magnetic one for the nonlinear electromagnetic field. We study the motion of an electrically charged particle for an electrically charged black hole and also for a magnetically charged black hole. In the second case the motion is restricted to Poincaré cones of various angles, as expected.

Hiranya Peiris

Hiranya Peiris

University College London

Physical Review D

Analog vacuum decay from vacuum initial conditions

Ultracold atomic gases can undergo phase transitions that mimic relativistic vacuum decay, allowing us to empirically test early Universe physics in tabletop experiments. We investigate the physics of these analog systems, going beyond previous analyses of the classical equations of motion to study quantum fluctuations in the cold-atom false vacuum. We show that the fluctuation spectrum of this vacuum state agrees with the usual relativistic result in the regime where the classical analogy holds, providing further evidence for the suitability of these systems for studying vacuum decay. Using a suite of semiclassical lattice simulations, we simulate bubble nucleation from this analog vacuum state in a 1D homonuclear potassium-41 mixture, finding qualitative agreement with instanton predictions. We identify realistic parameters for this system that will allow us to study vacuum decay with current experimental …

Hiranya Peiris

Hiranya Peiris

University College London

Physical Review D

Deep learning insights into cosmological structure formation

The evolution of linear initial conditions present in the early Universe into extended halos of dark matter at late times can be computed using cosmological simulations. However, a theoretical understanding of this complex process remains elusive; in particular, the role of anisotropic information in the initial conditions in establishing the final mass of dark matter halos remains a long-standing puzzle. Here, we build a deep learning framework to investigate this question. We train a three-dimensional convolutional neural network to predict the mass of dark matter halos from the initial conditions, and quantify in full generality the amounts of information in the isotropic and anisotropic aspects of the initial density field about final halo masses. We find that anisotropies add a small, albeit statistically significant amount of information over that contained within spherical averages of the density field about final halo mass …

Charalampos Moustakidis

Charalampos Moustakidis

Aristotle University of Thessaloniki

Physical Review D

Constraints for the X17 boson from compact objects observations

We investigate the hypothetical X17 boson on neutron stars and quark stars (QSs) using various hadronic equation of states (EoSs) with phenomenological or microscopic origin. Our aim is to set realistic constraints on its coupling constant and the mass scaling, with respect to causality and various possible upper mass limits and the dimensionless tidal deformability Λ 1.4. In particular, we pay special attention to two main phenomenological parameters of the X17, one is related to the coupling constant g that it has with hadrons or quarks and the other with the in-medium effects through regulator C. Both are very crucial concerning the contribution on the total energy density and pressure. In the case of considering the X17 as a carrier of nuclear force in relativistic mean field theory, an admixture into the vector boson segment was constrained by 20% and 30%. In our investigation, we came to the general conclusion …

Charalampos Moustakidis

Charalampos Moustakidis

Aristotle University of Thessaloniki

Physical Review D

Hybrid stars in light of the HESS J1731-347 remnant and the PREX-II experiment

The recent analysis on the central compact object in the HESS J1731-347 remnant suggests interestingly small values for its mass and radius. Such an observation favors soft nuclear models that may be challenged by the observation of massive compact stars. In contrast, the recent PREX-II experiment, concerning the neutron skin thickness of Pb 208, points toward stiff equations of state that favor larger compact star radii. In the present study, we aim to explore the compatibility between stiff hadronic equations of state (favored by PREX-II) and the HESS J1731-347 remnant in the context of hybrid stars. For the construction of hybrid equations of state we use three widely employed Skyrme models combined with the well-known vector MIT bag model. Furthermore we consider two different scenarios concerning the energy density of the bag. In the first case, that of a constant bag parameter, we find that the resulting …

Claudia Moreno

Claudia Moreno

Universidad de Guadalajara

Physical Review D

GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run

The second Gravitational-Wave Transient Catalog, GWTC-2, reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15∶ 00 UTC and 1 October 2019 15∶ 00 UTC. Here, we present GWTC-2.1, which reports on a deeper list of candidate events observed over the same period. We analyze the final version of the strain data over this period with improved calibration and better subtraction of excess noise, which has been publicly released. We employ three matched-filter search pipelines for candidate identification, and estimate the probability of astrophysical origin for each candidate event. While GWTC-2 used a false alarm rate threshold of 2 per year, we include in GWTC-2.1, 1201 candidates that pass a false alarm rate threshold of 2 per day. We calculate the source properties of a subset of 44 high-significance candidates that have a …

Claudia Moreno

Claudia Moreno

Universidad de Guadalajara

Physical Review D

Post-Newtonian gravitational waves with cosmological constant from the Einstein-Hilbert theory

We study the compact binary dynamics in the post-Newtonian approach implemented to the Einstein-Hilbert action adding the cosmological constant Λ at first post-Newtonian (1PN) order. We consider very small values of Λ finding that it plays the role of a PN factor to derive the Lagrangian of a compact two-body system at the center of mass frame at 1PN. Furthermore, the phase function ϕ (t) is obtained from the balance equation, and the two polarizations h+ and h× are also calculated. We observe changes due to Λ only at very low frequencies, and we notice that it plays the role of “stretch” the spacetime such that both amplitudes become smaller. However, given its nearly negligible value, Λ has no relevance at higher frequencies whatsoever.

Ian M. Shoemaker

Ian M. Shoemaker

University of South Dakota

Physical Review D

Long-lived particles and the quiet Sun

The nuclear reaction network within the interior of the Sun is an efficient MeV physics factory and can produce long-lived particles generic to dark sector models. In this work we consider the sensitivity of satellite instruments, primarily the RHESSI spectrometer, that observe the quiet Sun in the MeV regime where backgrounds are low. We find that quiet Sun observations offer a powerful and complementary probe in regions of parameter space, where the long-lived particle decay length is longer than the radius of the Sun and shorter than the distance between the Sun and Earth. We comment on connections to recent model-building work on heavy neutral leptons coupled to neutrinos and high-quality axions from mirror symmetries.

Hao Y. Zhang / 张昊

Hao Y. Zhang / 张昊

University of Pennsylvania

Physical Review D

Intermediate defect groups, polarization pairs, and noninvertible duality defects

Within the framework of relative and absolute quantum field theories (QFTs), we present a general formalism for understanding polarizations of the intermediate defect group and constructing noninvertible duality defects in theories in 2 k spacetime dimensions with self-dual gauge fields. We introduce the polarization pair, which fully specifies absolute QFTs as far as their (k− 1)-form defect groups are concerned, including their (k− 1)-form symmetries, global structures (including discrete θ-angle), and local counterterms. Using the associated symmetry topological field theory (TFT), we show that the polarization pair is capable of succinctly describing topological manipulations, eg, gauging (k− 1)-form global symmetries and stacking counterterms, of absolute QFTs. Furthermore, automorphisms of the (k− 1)-form charge lattice naturally act on polarization pairs via their action on the defect group; they can be viewed as …

Igor Altsybeev

Igor Altsybeev

St. Petersburg State University

Physical Review D

Measurement of the fraction of jet longitudinal momentum carried by baryons in collisions

Recent measurements of charm-baryon production in hadronic collisions have questioned the universality of charm-quark fragmentation across different collision systems. In this work the fragmentation of charm quarks into charm baryons is probed, by presenting the first measurement of the longitudinal jet momentum fraction carried by Λ c+ baryons, z∥ ch, in hadronic collisions. The results are obtained in proton-proton (p p) collisions at s= 13 TeV at the LHC, with Λ c+ baryons and charged (track-based) jets reconstructed in the transverse momentum intervals of 3≤ p T Λ c+< 15 GeV/c and 7≤ p T jet ch< 15 GeV/c, respectively. The z∥ ch distribution is compared to a measurement of D 0-tagged charged jets in p p collisions as well as to pythia 8 simulations. The data hints that the fragmentation of charm quarks into charm baryons is softer with respect to charm mesons, in the measured kinematic interval, as …

Fabrizio BARONE

Fabrizio BARONE

Università degli Studi di Salerno

Physical Review D

GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run

The second Gravitational-Wave Transient Catalog, GWTC-2, reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15∶ 00 UTC and 1 October 2019 15∶ 00 UTC. Here, we present GWTC-2.1, which reports on a deeper list of candidate events observed over the same period. We analyze the final version of the strain data over this period with improved calibration and better subtraction of excess noise, which has been publicly released. We employ three matched-filter search pipelines for candidate identification, and estimate the probability of astrophysical origin for each candidate event. While GWTC-2 used a false alarm rate threshold of 2 per year, we include in GWTC-2.1, 1201 candidates that pass a false alarm rate threshold of 2 per day. We calculate the source properties of a subset of 44 high-significance candidates that have a …

John Veitch

John Veitch

University of Glasgow

Physical Review D

GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run

The second Gravitational-Wave Transient Catalog, GWTC-2, reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15∶ 00 UTC and 1 October 2019 15∶ 00 UTC. Here, we present GWTC-2.1, which reports on a deeper list of candidate events observed over the same period. We analyze the final version of the strain data over this period with improved calibration and better subtraction of excess noise, which has been publicly released. We employ three matched-filter search pipelines for candidate identification, and estimate the probability of astrophysical origin for each candidate event. While GWTC-2 used a false alarm rate threshold of 2 per year, we include in GWTC-2.1, 1201 candidates that pass a false alarm rate threshold of 2 per day. We calculate the source properties of a subset of 44 high-significance candidates that have a …

Elham E Khoda

Elham E Khoda

University of Washington

Physical Review D

Search for quantum black hole production in lepton+ jet final states using proton-proton collisions at s= 13 TeV with the ATLAS detector

A search for quantum black holes in electron+ jet and muon+ jet invariant mass spectra is performed with 140 fb− 1 of data collected by the ATLAS detector in proton-proton collisions at s= 13 TeV at the Large Hadron Collider. The observed invariant mass spectrum of lepton+ jet pairs is consistent with Standard Model expectations. Upper limits are set at 95% confidence level on the production cross section times branching fractions for quantum black holes decaying into a lepton and a quark in a search region with invariant mass above 2.0 TeV. The resulting quantum black hole lower mass threshold limit is 9.2 TeV in the Arkani-Hamed-Dimopoulos-Dvali model, and 6.8 TeV in the Randall-Sundrum model.

David Silvermyr

David Silvermyr

Lunds Universitet

Physical Review D

Measurement of the fraction of jet longitudinal momentum carried by baryons in collisions

Recent measurements of charm-baryon production in hadronic collisions have questioned the universality of charm-quark fragmentation across different collision systems. In this work the fragmentation of charm quarks into charm baryons is probed, by presenting the first measurement of the longitudinal jet momentum fraction carried by Λ c+ baryons, z∥ ch, in hadronic collisions. The results are obtained in proton-proton (p p) collisions at s= 13 TeV at the LHC, with Λ c+ baryons and charged (track-based) jets reconstructed in the transverse momentum intervals of 3≤ p T Λ c+< 15 GeV/c and 7≤ p T jet ch< 15 GeV/c, respectively. The z∥ ch distribution is compared to a measurement of D 0-tagged charged jets in p p collisions as well as to pythia 8 simulations. The data hints that the fragmentation of charm quarks into charm baryons is softer with respect to charm mesons, in the measured kinematic interval, as …

Giuseppe Callea

Giuseppe Callea

University of Glasgow

Physical Review D

Search for quantum black hole production in lepton+ jet final states using proton-proton collisions at s= 13 TeV with the ATLAS detector

A search for quantum black holes in electron+ jet and muon+ jet invariant mass spectra is performed with 140 fb− 1 of data collected by the ATLAS detector in proton-proton collisions at s= 13 TeV at the Large Hadron Collider. The observed invariant mass spectrum of lepton+ jet pairs is consistent with Standard Model expectations. Upper limits are set at 95% confidence level on the production cross section times branching fractions for quantum black holes decaying into a lepton and a quark in a search region with invariant mass above 2.0 TeV. The resulting quantum black hole lower mass threshold limit is 9.2 TeV in the Arkani-Hamed-Dimopoulos-Dvali model, and 6.8 TeV in the Randall-Sundrum model.

Minsu Park

Minsu Park

University of Pennsylvania

Physical Review D

Atacama Cosmology Telescope: The persistence of neutrino self-interaction in cosmological measurements

We use data from the Atacama Cosmology Telescope (ACT) DR4 to search for the presence of neutrino self-interaction in the cosmic microwave background. Consistent with prior works, the posterior distributions we find are bimodal, with one mode consistent with Λ CDM and one where neutrinos strongly self-interact. By combining ACT data with large-scale information from WMAP, we find that a delayed onset of neutrino free streaming caused by significantly strong neutrino self-interaction is compatible with these data at the 2− 3 σ level. As seen in the past, the preference shifts to Λ CDM with the inclusion of Planck data. We determine that the preference for strong neutrino self-interaction is largely driven by angular scales corresponding to 700≲ ℓ≲ 1000 in the ACT E-mode polarization data. This region is expected to be key to discriminate between neutrino self-interacting modes and will soon be probed with …

Herodotos Herodotou

Herodotos Herodotou

Cyprus University of Technology

Physical Review D

Supersymmetric QCD on the lattice: Fine-tuning of the Yukawa couplings

We determine the fine-tuning of the Yukawa couplings of supersymmetric QCD, discretized on a lattice. We use perturbation theory at one-loop level. The modified minimal subtraction scheme (MS) is employed; by its definition, this scheme requires perturbative calculations, in the continuum and/or on the lattice. On the lattice, we utilize the Wilson formulation for gluon, quark, and gluino fields; for squark fields we use naive discretization. The sheer difficulties of this study lie in the fact that different components of squark fields mix among themselves at the quantum level and the action’s symmetries, such as parity and charge conjugation, allow an additional Yukawa coupling. Consequently, for an appropriate fine-tuning of the Yukawa terms, these mixings must be taken into account in the renormalization conditions. All Green’s functions and renormalization factors are analytic expressions depending on the number of …