Andrew Connolly

Andrew Connolly

University of Washington

H-index: 135

North America-United States

Professor Information

University

University of Washington

Position

___

Citations(all)

108700

Citations(since 2020)

26601

Cited By

93331

hIndex(all)

135

hIndex(since 2020)

67

i10Index(all)

416

i10Index(since 2020)

212

Email

University Profile Page

University of Washington

Research & Interests List

Astronomy

Top articles of Andrew Connolly

LINCC-HiPSCat and LSDB: Joint Distributed Analysis of LSST-Scale Datasets

The present decade will be marked by growth of large survey catalogs, both in their number and scale. Joint analysis of such catalogs has historically shown itself to be tremendously useful (eg enabling multi-wavelength or time-domain studies), with its importance likely to rise even further. Yet, with the increase in scale towards PBs of data, joint analysis—even at a catalog level—becomes a complex data management problem that few astronomers are equipped to tackle with present-day technology. We present HiPSCat, a format for efficient and queryable storage of large datasets, and LSDB (Large Survey DataBase), a Python framework that enables distributed cross-matching and analysis of astronomical datasets at LSST scale (O (10B) sources). The HiPSCat format, framework-independent and built as an extension of the well-known IVOA HIPS standard, provides intelligent (balanced) spatial partitioning and …

Authors

Samuel Wyatt,Mario Juric,Sean McGuire,Melissa DeLucchi,Maxine West,Konstantin Malanchev,Colin Slater,Steven Stetzler,Andrew Connolly,Rachel Mandelbaum,Jeremy Kubica,Alex Malz,Sandros Campos,George Amvrosiadis

Journal

American Astronomical Society Meeting Abstracts

Published Date

2024/2

Search for decoherence from quantum gravity with atmospheric neutrinos

Neutrino oscillations at the highest energies and longest baselines can be used to study the structure of spacetime and test the fundamental principles of quantum mechanics. If the metric of spacetime has a quantum mechanical description, its fluctuations at the Planck scale are expected to introduce non-unitary effects that are inconsistent with the standard unitary time evolution of quantum mechanics. Neutrinos interacting with such fluctuations would lose their quantum coherence, deviating from the expected oscillatory flavour composition at long distances and high energies. Here we use atmospheric neutrinos detected by the IceCube South Pole Neutrino Observatory in the energy range of 0.5-10.0 TeV to search for coherence loss in neutrino propagation. We find no evidence of anomalous neutrino decoherence and determine limits on neutrino-quantum gravity interactions. The constraint on the effective decoherence strength parameter within an energy-independent decoherence model improves on previous limits by a factor of 30. For decoherence effects scaling as E2, our limits are advanced by more than six orders of magnitude beyond past measurements compared with the state of the art. Interactions of atmospheric neutrinos with quantum-gravity-induced fluctuations of the metric of spacetime would lead to decoherence. The IceCube Collaboration constrains such interactions with atmospheric neutrinos.

Authors

R Abbasi,M Ackermann,J Adams,SK Agarwalla,JA Aguilar,M Ahlers,JM Alameddine,NM Amin,K Andeen,G Anton,C Arguelles,Y Ashida,S Athanasiadou,L Ausborm,SN Axani,X Bai,A Balagopal,M Baricevic,SW Barwick,V Basu,R Bay,JJ Beatty,J Becker Tjus,J Beise,C Bellenghi,C Benning,S BenZvi,D Berley,E Bernardini,DZ Besson,E Blaufuss,S Blot,F Bontempo,JY Book,C Boscolo Meneguolo,S Boser,O Botner,J Bottcher,J Braun,B Brinson,J Brostean-Kaiser,L Brusa,RT Burley,RS Busse,D Butterfield,MA Campana,K Carloni,EG Carnie-Bronca,S Chattopadhyay,N Chau,C Chen,Z Chen,D Chirkin,S Choi,BA Clark,A Coleman,GH Collin,A Connolly,JM Conrad,P Coppin,P Correa,DF Cowen,P Dave,C De Clercq,JJ DeLaunay,D Delgado,S Deng,K Deoskar,A Desai,P Desiati,KD de Vries,G de Wasseige,T DeYoung,A Diaz,JC Diaz-Velez,M Dittmer,A Domi,H Dujmovic,MA DuVernois,T Ehrhardt,A Eimer,P Eller,E Ellinger,S El Mentawi,D Elsasser,R Engel,H Erpenbeck,J Evans,PA Evenson,KL Fan,K Fang,K Farrag,AR Fazely,A Fedynitch,N Feigl,S Fiedlschuster,C Finley,L Fischer,D Fox,A Franckowiak,P Furst,J Gallagher,E Ganster,A Garcia,L Gerhardt,A Ghadimi,C Glaser,T Glusenkamp,JG Gonzalez,D Grant,SJ Gray,O Gries,S Griffin,S Griswold,KM Groth,C Gunther,P Gutjahr,C Ha,C Haack,A Hallgren,R Halliday,L Halve,F Halzen,H Hamdaoui,M Ha Minh,M Handt,K Hanson,J Hardin,AA Harnisch,P Hatch,A Haungs,J Haussler,K Helbing,J Hellrung,J Hermannsgabner,L Heuermann,N Heyer,S Hickford,A Hidvegi,C Hill,GC Hill,KD Hoffman,S Hori,K Hoshina,W Hou,T Huber,K Hultqvist,M Hunnefeld,R Hussain,K Hymon

Journal

Nature Physics

Published Date

2024

Observation of seven astrophysical tau neutrino candidates with IceCube

We report on a measurement of astrophysical tau neutrinos with 9.7 yr of IceCube data. Using convolutional neural networks trained on images derived from simulated events, seven candidate ν τ events were found with visible energies ranging from roughly 20 TeV to 1 PeV and a median expected parent ν τ energy of about 200 TeV. Considering backgrounds from astrophysical and atmospheric neutrinos, and muons from π±/K±decays in atmospheric air showers, we obtain a total estimated background of about 0.5 events, dominated by non-ν τ astrophysical neutrinos. Thus, we rule out the absence of astrophysical ν τ at the 5 σ level. The measured astrophysical ν τ flux is consistent with expectations based on previously published IceCube astrophysical neutrino flux measurements and neutrino oscillations.

Authors

R Abbasi,M Ackermann,J Adams,SK Agarwalla,JA Aguilar,M Ahlers,JM Alameddine,NM Amin,K Andeen,G Anton,C Argüelles,Y Ashida,S Athanasiadou,SN Axani,X Bai,VA Balagopal,M Baricevic,SW Barwick,V Basu,R Bay,JJ Beatty,J Becker Tjus,J Beise,C Bellenghi,C Benning,S BenZvi,D Berley,E Bernardini,DZ Besson,E Blaufuss,S Blot,F Bontempo,JY Book,C Boscolo Meneguolo,S Böser,O Botner,J Böttcher,E Bourbeau,J Braun,B Brinson,J Brostean-Kaiser,RT Burley,RS Busse,D Butterfield,MA Campana,K Carloni,EG Carnie-Bronca,S Chattopadhyay,N Chau,C Chen,Z Chen,D Chirkin,S Choi,BA Clark,L Classen,A Coleman,GH Collin,A Connolly,JM Conrad,P Coppin,P Correa,DF Cowen,P Dave,C De Clercq,JJ DeLaunay,D Delgado,S Deng,K Deoskar,A Desai,P Desiati,KD de Vries,G de Wasseige,T DeYoung,A Diaz,JC Díaz-Vélez,M Dittmer,A Domi,H Dujmovic,MA DuVernois,T Ehrhardt,P Eller,E Ellinger,S El Mentawi,D Elsässer,R Engel,H Erpenbeck,J Evans,PA Evenson,KL Fan,K Fang,K Farrag,AR Fazely,N Feigl,S Fiedlschuster,AT Fienberg,C Finley,L Fischer,D Fox,A Franckowiak,A Fritz,P Fürst,J Gallagher,E Ganster,A Garcia,L Gerhardt,A Ghadimi,C Glaser,T Glauch,T Glüsenkamp,N Goehlke,JG Gonzalez,S Goswami,D Grant,SJ Gray,O Gries,S Griffin,S Griswold,KM Groth,C Günther,P Gutjahr,C Haack,A Hallgren,R Halliday,L Halve,F Halzen,H Hamdaoui,M Ha Minh,K Hanson,J Hardin,AA Harnisch,P Hatch,A Haungs,K Helbing,J Hellrung,F Henningsen,L Heuermann,N Heyer,S Hickford,A Hidvegi,C Hill,GC Hill,KD Hoffman,S Hori,K Hoshina,W Hou,T Huber,K Hultqvist,M Hünnefeld,R Hussain,K Hymon

Journal

Physical Review Letters

Published Date

2024/4/11

Characterization of the Astrophysical Diffuse Neutrino Flux using Starting Track Events in IceCube

A measurement of the diffuse astrophysical neutrino spectrum is presented using IceCube data collected from 2011-2022 (10.3 years). We developed novel detection techniques to search for events with a contained vertex and exiting track induced by muon neutrinos undergoing a charged-current interaction. Searching for these starting track events allows us to not only more effectively reject atmospheric muons but also atmospheric neutrino backgrounds in the southern sky, opening a new window to the sub-100 TeV astrophysical neutrino sky. The event selection is constructed using a dynamic starting track veto and machine learning algorithms. We use this data to measure the astrophysical diffuse flux as a single power law flux (SPL) with a best-fit spectral index of and per-flavor normalization of $\phi^{\mathrm{Astro}}_{\mathrm{per-flavor}} = 1.68 ^{+0.19}_{-0.22} \times 10^{-18} \times \mathrm{GeV}^{-1} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1}$ (at 100 TeV). The sensitive energy range for this dataset is 3 - 550 TeV under the SPL assumption. This data was also used to measure the flux under a broken power law, however we did not find any evidence of a low energy cutoff.

Authors

R Abbasi,M Ackermann,J Adams,SK Agarwalla,JA Aguilar,M Ahlers,JM Alameddine,NM Amin,K Andeen,G Anton,C Argüelles,Y Ashida,S Athanasiadou,L Ausborm,SN Axani,X Bai,M Baricevic,SW Barwick,S Bash,V Basu,R Bay,JJ Beatty,J Becker Tjus,J Beise,C Bellenghi,C Benning,S BenZvi,D Berley,E Bernardini,DZ Besson,E Blaufuss,S Blot,F Bontempo,JY Book,C Boscolo Meneguolo,S Böser,O Botner,J Böttcher,J Braun,B Brinson,J Brostean-Kaiser,L Brusa,RT Burley,RS Busse,D Butterfield,MA Campana,I Caracas,K Carloni,J Carpio,S Chattopadhyay,N Chau,Z Chen,D Chirkin,S Choi,BA Clark,A Coleman,GH Collin,A Connolly,JM Conrad,P Coppin,R Corley,P Correa,DF Cowen,P Dave,C De Clercq,JJ DeLaunay,D Delgado,S Deng,K Deoskar,A Desai,P Desiati,KD de Vries,G de Wasseige,T DeYoung,A Diaz,JC Díaz-Vélez,M Dittmer,A Domi,L Draper,H Dujmovic,K Dutta,MA DuVernois,T Ehrhardt,L Eidenschink,A Eimer,P Eller,E Ellinger,S El Mentawi,D Elsässer,R Engel,H Erpenbeck,J Evans,PA Evenson,KL Fan,K Fang,K Farrag,AR Fazely,A Fedynitch,N Feigl,S Fiedlschuster,C Finley,L Fischer,D Fox,A Franckowiak,P Fürst,J Gallagher,E Ganster,A Garcia,E Genton,L Gerhardt,A Ghadimi,C Girard-Carillo,C Glaser,T Glüsenkamp,JG Gonzalez,S Goswami,A Granados,D Grant,SJ Gray,O Gries,S Griffin,S Griswold,KM Groth,C Günther,P Gutjahr,C Ha,C Haack,A Hallgren,R Halliday,L Halve,F Halzen,H Hamdaoui,M Ha Minh,M Handt,K Hanson,J Hardin,AA Harnisch,P Hatch,A Haungs,J Häußler,K Helbing,J Hellrung,J Hermannsgabner,L Heuermann,N Heyer,S Hickford,A Hidvegi,C Hill,GC Hill,KD Hoffman

Journal

arXiv preprint arXiv:2402.18026

Published Date

2024/2/28

LINCC Frameworks-HiPSCat Margin Caching

The LINCC Frameworks team has been developing the HiPSCat format, a way to store astronomical survey data using hierarchically ordered HEALPix tiles to spatially partition data across the whole sky into equally sized partition files to allow for easy parallelization and enable fast cross matching and other computationally expensive operations. A major problem that has been raised is the case where data from the same object falls along the border regions of different HEALPix partitions and therefore falls into different data files, leading to potential data loss in certain operations. As a solution, we have developed our" Margin Cache" system, which can generate a cache of data points just outside the borders of a HEALPix pixel within a user provided angular distance threshold (typically 5 to 10 arcseconds) that can then be pulled into any parallel computation system and added to the contents of the main partition …

Authors

Maxine West,Jeremy Kubica,Sean McGuire,Samuel Wyatt,Melissa Delucchi,Mario Juric,Steven Stetzler,Colin Slater,Andrew Connolly,Rachel Mandelbaum,Alex Malz,George Amvrosiadis,Sandro Campos,Konstantin Malanchev

Journal

American Astronomical Society Meeting Abstracts

Published Date

2024/2

VizieR Online Data Catalog: IceCube Event Catalog of Alert Tracks (ICECAT-1)(Abbasi+, 2023)

We compile the neutrino alert catalog by applying the procedures of event selection described in Section 3 followed by likelihood scans on IceCube data going back to 2011 May.

Authors

R Abbasi,M Ackermann,J Adams,SK Agarwalla,JA Aguilar,M Ahlers,JM Alameddine,NM Amin,K Andeen,G Anton,C Arguelles,Y Ashida,S Athanasiadou,SN Axani,X Bai,AV Balagopal,M Baricevic,SW Barwick,V Basu,R Bay,JJ Beatty,K-H Becker,J Becker Tjus,J Beise,C Bellenghi,S Benzvi,D Berley,E Bernardini,DZ Besson,G Binder,D Bindig,E Blaufuss,S Blot,F Bontempo,JY Book,C Boscolo Meneguolo,S Boser,O Botner,J Bottcher,E Bourbeau,J Braun,B Brinson,J Brostean-Kaiser,RT Burley,RS Busse,D Butterfield,MA Campana,K Carloni,EG Carnie-Bronca,S Chattopadhyay,N Chau,C Chen,Z Chen,D Chirkin,S Choi,BA Clark,L Classen,A Coleman,GH Collin,A Connolly,JM Conrad,P Coppin,P Correa,S Countryman,DF Cowen,P Dave,C de Clercq,JJ Delaunay,D Delgado,H Dembinski,S Deng,K Deoskar,A Desai,P Desiati,KD de Vries,G de Wasseige,T Deyoung,A Diaz,JC Diaz-Velez,M Dittmer,A Domi,H Dujmovic,MA Duvernois,T Ehrhardt,P Eller,R Engel,H Erpenbeck,J Evans,PA Evenson,KL Fan,K Fang,K Farrag,AR Fazely,A Fedynitch,N Feigl,S Fiedlschuster,C Finley,L Fischer,D Fox,A Franckowiak,E Friedman,A Fritz,P Furst,TK Gaisser,J Gallagher,E Ganster,A Garcia,L Gerhardt,A Ghadimi,C Glaser,T Glauch,T Glusenkamp,N Goehlke,JG Gonzalez,S Goswami,D Grant,SJ Gray,S Griffin,S Griswold,C Gunther,P Gutjahr,C Haack,A Hallgren,R Halliday,L Halve,F Halzen,H Hamdaoui,Minh M Ha,K Hanson,J Hardin,AA Harnisch,P Hatch,A Haungs,K Helbing,J Hellrung,F Henningsen,L Heuermann,N Heyer,S Hickford,A Hidvegi,C Hill,GC Hill,KD Hoffman,K Hoshina,W Hou,T Huber,K Hultqvist,M Hunnefeld,R Hussain,K Hymon

Journal

VizieR Online Data Catalog

Published Date

2024/2

Macroscopic approach to the radar echo scatter from high-energy particle cascades

To probe the cosmic particle flux at the highest energies, large volumes of dense material like ice have to be monitored. This can be achieved by exploiting the radio signal. In this work, we provide a macroscopic model to predict the radar echo signatures found when a radio signal is reflected from a cosmic-ray or neutrino-induced particle cascade propagating in a dense medium like ice. Its macroscopic nature allows for an energy independent run-time, taking less than 10 s for simulating a single scatter event. As a first application, we discuss basic signal properties and simulate the expected signal for the T-576 beam-test experiment at the Stanford Linear Accelerator Center. We find good signal strength agreement with the only observed radar echo from a high-energy particle cascade to date.

Authors

E Huesca Santiago,KD de Vries,P Allison,J Beatty,D Besson,A Connolly,A Cummings,C Deaconu,S De Kockere,D Frikken,C Hast,C-Y Kuo,A Kyriacou,UA Latif,I Loudon,V Lukic,C McLennan,K Mulrey,J Nam,K Nivedita,A Nozdrina,E Oberla,S Prohira,JP Ralston,MFH Seikh,RS Stanley,J Stoffels,S Toscano,D Van den Broeck,N van Eijndhoven,S Wissel,Radar Echo Telescope Collaboration

Journal

Physical Review D

Published Date

2024/4/8

The DECam Ecliptic Exploration Project (DEEP). VI. First Multiyear Observations of Trans-Neptunian Objects

We present the first set of trans-Neptunian objects (TNOs) observed on multiple nights in data taken from the DECam Ecliptic Exploration Project. Of these 110 TNOs, 105 do not coincide with previously known TNOs and appear to be new discoveries. Each individual detection for our objects resulted from a digital tracking search at TNO rates of motion, using two-to-four-hour exposure sets, and the detections were subsequently linked across multiple observing seasons. This procedure allows us to find objects with magnitudes m VR≈ 26. The object discovery processing also included a comprehensive population of objects injected into the images, with a recovery and linking rate of at least 94%. The final orbits were obtained using a specialized orbit-fitting procedure that accounts for the positional errors derived from the digital tracking procedure. Our results include robust orbits and magnitudes for classical TNOs …

Authors

Hayden Smotherman,Pedro H Bernardinelli,Stephen KN Portillo,Andrew J Connolly,J Bryce Kalmbach,Steven Stetzler,Mario Jurić,Dino Bektešević,Zachary Langford,Fred C Adams,William J Oldroyd,Matthew J Holman,Colin Orion Chandler,Cesar Fuentes,David W Gerdes,Hsing Wen Lin,Larissa Markwardt,Andrew McNeill,Michael Mommert,Kevin J Napier,Matthew J Payne,Darin Ragozzine,Andrew S Rivkin,Hilke Schlichting,Scott S Sheppard,Ryder Strauss,David E Trilling,Chadwick A Trujillo

Journal

The Astronomical Journal

Published Date

2024/2/27

Professor FAQs

What is Andrew Connolly's h-index at University of Washington?

The h-index of Andrew Connolly has been 67 since 2020 and 135 in total.

What are Andrew Connolly's research interests?

The research interests of Andrew Connolly are: Astronomy

What is Andrew Connolly's total number of citations?

Andrew Connolly has 108,700 citations in total.

What are the co-authors of Andrew Connolly?

The co-authors of Andrew Connolly are Zeljko Ivezic, Gordon Richards, A. S. Szalay, Istvan Csabai, Larry Wasserman, Robert J. Brunner.

Co-Authors

H-index: 142
Zeljko Ivezic

Zeljko Ivezic

University of Washington

H-index: 123
Gordon Richards

Gordon Richards

Drexel University

H-index: 123
A. S. Szalay

A. S. Szalay

Johns Hopkins University

H-index: 98
Istvan Csabai

Istvan Csabai

Eötvös Loránd Tudományegyetem

H-index: 89
Larry Wasserman

Larry Wasserman

Carnegie Mellon University

H-index: 88
Robert J. Brunner

Robert J. Brunner

University of Illinois at Urbana-Champaign

academic-engine

Useful Links