Observation of Production in Collisions at with the ATLAS Detector

Physical review letters

Published On 2022/8/4

This Letter reports the observation of W W W production and a measurement of its cross section using 139 fb− 1 of proton-proton collision data recorded at a center-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. Events with two same-sign leptons (electrons or muons) and at least two jets, as well as events with three charged leptons, are selected. A multivariate technique is then used to discriminate between signal and background events. Events from W W W production are observed with a significance of 8.0 standard deviations, where the expectation is 5.4 standard deviations. The inclusive W W W production cross section is measured to be 820±100 (stat)±80 (syst) fb, approximately 2.6 standard deviations from the predicted cross section of 511±18 fb calculated at next-to-leading-order QCD and leading-order electroweak accuracy.

Journal

Physical review letters

Volume

129

Issue

6

Page

061803

Authors

Robert W. Gardner Jr

Robert W. Gardner Jr

University of Chicago

H-Index

250

Research Interests

High Energy Physics

Distributed Computing

Advanced Cyberinfrastructure

University Profile Page

Zheng Wang

Zheng Wang

Lakehead University

H-Index

244

Research Interests

control theory

University Profile Page

Orhan CAKIR

Orhan CAKIR

Ankara Üniversitesi

H-Index

234

Research Interests

Particle Physics

Collider Physics

Phenomenology

Beyond the Standard Model

Computing in Physics

University Profile Page

David Wardrope

David Wardrope

University College London

H-Index

229

Research Interests

Particle Physics

University Profile Page

Yao Ming

Yao Ming

University of Wisconsin-Madison

H-Index

221

Research Interests

High Energy of Physics

University Profile Page

Dugan O'Neil

Dugan O'Neil

Simon Fraser University

H-Index

210

Research Interests

physics

University Profile Page

Other Articles from authors

Shih-Chieh Hsu

Shih-Chieh Hsu

University of Washington

Combination of searches for heavy spin-1 resonances using 139 fb of proton-proton collision data at TeV with the ATLAS detector

A combination of searches for new heavy spin-1 resonances decaying into different pairings of , , or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb of proton-proton collisions at = 13 TeV collected during 2015-2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (, , , and ) or third-generation leptons ( and ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion.

Shih-Chieh Hsu

Shih-Chieh Hsu

University of Washington

Physical review letters

Observation of WZγ Production in pp Collisions at s= 13 TeV with the ATLAS Detector

This Letter reports the observation of W Z γ production and a measurement of its cross section using 140.1±1.2 fb− 1 of proton-proton collision data recorded at a center-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. The W Z γ production cross section, with both the W and Z bosons decaying leptonically, p p→ W Z γ→ ℓ′±ν ℓ+ ℓ− γ (ℓ (′)= e, μ), is measured in a fiducial phase-space region defined such that the leptons and the photon have high transverse momentum and the photon is isolated. The cross section is found to be 2.01±0.30 (stat)±0.16 (syst) fb. The corresponding standard model predicted cross section calculated at next-to-leading order in perturbative quantum chromodynamics and at leading order in the electroweak coupling constant is 1.50±0.06 fb. The observed significance of the W Z γ signal is 6.3 σ, compared with an expected significance of 5.0 σ.

Michael Kagan

Michael Kagan

Stanford University

arXiv preprint arXiv:2403.07066

Re-Simulation-based Self-Supervised Learning for Pre-Training Foundation Models

Self-Supervised Learning (SSL) is at the core of training modern large machine learning models, providing a scheme for learning powerful representations that can be used in a variety of downstream tasks. However, SSL strategies must be adapted to the type of training data and downstream tasks required. We propose RS3L, a novel simulation-based SSL strategy that employs a method of re-simulation to drive data augmentation for contrastive learning. By intervening in the middle of the simulation process and re-running simulation components downstream of the intervention, we generate multiple realizations of an event, thus producing a set of augmentations covering all physics-driven variations available in the simulator. Using experiments from high-energy physics, we explore how this strategy may enable the development of a foundation model; we show how R3SL pre-training enables powerful performance in downstream tasks such as discrimination of a variety of objects and uncertainty mitigation. In addition to our results, we make the RS3L dataset publicly available for further studies on how to improve SSL strategies.

Michael A. Strauss

Michael A. Strauss

Princeton University

arXiv preprint arXiv:2404.12343

Gemini Near Infrared Spectrograph--Distant Quasar Survey: Rest-Frame Ultraviolet-Optical Spectral Properties of Broad Absorption Line Quasars

We present the rest-frame ultraviolet-optical spectral properties of 65 broad absorption line (BAL) quasars from the Gemini Near Infrared Spectrograph-Distant Quasar Survey (GNIRS-DQS). These properties are compared with those of 195 non-BAL quasars from GNIRS-DQS in order to identify the drivers for the appearance of BALs in quasar spectra. In particular, we compare equivalent widths and velocity widths, as well as velocity offsets from systemic redshifts, of principal emission lines. In spite of the differences between their rest-frame ultraviolet spectra, we find that luminous BAL quasars are generally indistinguishable from their non-BAL counterparts in the rest-frame optical band at redshifts . We do not find any correlation between BAL trough properties and the H-based supermassive black hole masses and normalized accretion rates in our sample. Considering the Sloan Digital Sky Survey quasar sample, which includes the GNIRS-DQS sample, we find that a monochromatic luminosity at rest-frame 2500 A of erg s is a necessary condition for launching BAL outflows in quasars. We compare our findings with other BAL quasar samples and discuss the roles that accretion rate and orientation play in the appearance of BAL troughs in quasar spectra.

Shih-Chieh Hsu

Shih-Chieh Hsu

University of Washington

Chinese physics C

Performance and calibration of quark/gluon-jet taggers using 140 fb Of Collisions at TeV with the ATLAS detector

The identification of jets originating from quarks and gluons, often referred to as quark/gluon tagging, plays an important role in various analyses performed at the Large Hadron Collider, as Standard Model measurements and searches for new particles decaying to quarks often rely on suppressing a large gluon-induced background. This paper describes the measurement of the efficiencies of quark/gluon taggers developed within the ATLAS Collaboration, using TeV proton–proton collision data with an integrated luminosity of 140 fb collected by the ATLAS experiment. Two taggers with high performances in rejecting jets from gluon over jets from quarks are studied: one tagger is based on requirements on the number of inner-detector tracks associated with the jet, and the other combines several jet substructure observables using a boosted decision tree. A method is established to determine the quark/gluon fraction in data, by using quark/gluon-enriched subsamples defined by the jet pseudorapidity. Differences in tagging efficiency between data and simulation are provided for jets with transverse momentum between 500 GeV and 2 TeV and for multiple tagger working points.

Pierre Savard

Pierre Savard

École Polytechnique de Montréal

Physics Results

On the 23rd November 2009, the LHC came alive for the experiments with first energy, proton-proton ie, for a centre collisions of mass delivered (CM) energy, for physics/s, of at 900 the GeV. beam On injection the 30th of the November world record the for beam highest energy energy was particle ramped-up collider to 1.18 in the TeV, world thus at setting/s=

Michael A. Strauss

Michael A. Strauss

Princeton University

arXiv preprint arXiv:2401.17945

Euclid preparation. The Near-IR Background Dipole Experiment with Euclid

Verifying the fully kinematic nature of the cosmic microwave background (CMB) dipole is of fundamental importance in cosmology. In the standard cosmological model with the Friedman-Lemaitre-Robertson-Walker (FLRW) metric from the inflationary expansion the CMB dipole should be entirely kinematic. Any non-kinematic CMB dipole component would thus reflect the preinflationary structure of spacetime probing the extent of the FLRW applicability. Cosmic backgrounds from galaxies after the matter-radiation decoupling, should have kinematic dipole component identical in velocity with the CMB kinematic dipole. Comparing the two can lead to isolating the CMB non-kinematic dipole. It was recently proposed that such measurement can be done using the near-IR cosmic infrared background (CIB) measured with the currently operating Euclid telescope, and later with Roman. The proposed method reconstructs the resolved CIB, the Integrated Galaxy Light (IGL), from Euclid's Wide Survey and probes its dipole, with a kinematic component amplified over that of the CMB by the Compton-Getting effect. The amplification coupled with the extensive galaxy samples forming the IGL would determine the CIB dipole with an overwhelming signal/noise, isolating its direction to sub-degree accuracy. We develop details of the method for Euclid's Wide Survey in 4 bands spanning 0.6 to 2 mic. We isolate the systematic and other uncertainties and present methodologies to minimize them, after confining the sample to the magnitude range with negligible IGL/CIB dipole from galaxy clustering. These include the required star-galaxy separation, accounting for …

Douglas M Gingrich

Douglas M Gingrich

University of Alberta

Chinese physics C

Performance and calibration of quark/gluon-jet taggers using 140 fb Of Collisions at TeV with the ATLAS detector

The identification of jets originating from quarks and gluons, often referred to as quark/gluon tagging, plays an important role in various analyses performed at the Large Hadron Collider, as Standard Model measurements and searches for new particles decaying to quarks often rely on suppressing a large gluon-induced background. This paper describes the measurement of the efficiencies of quark/gluon taggers developed within the ATLAS Collaboration, using TeV proton–proton collision data with an integrated luminosity of 140 fb collected by the ATLAS experiment. Two taggers with high performances in rejecting jets from gluon over jets from quarks are studied: one tagger is based on requirements on the number of inner-detector tracks associated with the jet, and the other combines several jet substructure observables using a boosted decision tree. A method is established to determine the quark/gluon fraction in data, by using quark/gluon-enriched subsamples defined by the jet pseudorapidity. Differences in tagging efficiency between data and simulation are provided for jets with transverse momentum between 500 GeV and 2 TeV and for multiple tagger working points.

Yao Ming

Yao Ming

University of Wisconsin-Madison

Physical review letters

Observation of WZγ Production in pp Collisions at s= 13 TeV with the ATLAS Detector

This Letter reports the observation of W Z γ production and a measurement of its cross section using 140.1±1.2 fb− 1 of proton-proton collision data recorded at a center-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. The W Z γ production cross section, with both the W and Z bosons decaying leptonically, p p→ W Z γ→ ℓ′±ν ℓ+ ℓ− γ (ℓ (′)= e, μ), is measured in a fiducial phase-space region defined such that the leptons and the photon have high transverse momentum and the photon is isolated. The cross section is found to be 2.01±0.30 (stat)±0.16 (syst) fb. The corresponding standard model predicted cross section calculated at next-to-leading order in perturbative quantum chromodynamics and at leading order in the electroweak coupling constant is 1.50±0.06 fb. The observed significance of the W Z γ signal is 6.3 σ, compared with an expected significance of 5.0 σ.

Elias Sideras-Haddad

Elias Sideras-Haddad

University of the Witwatersrand

Physica E: Low-dimensional Systems and Nanostructures

Evidence of ferromagnetic behaviour in carbon nanospheres synthesised by the chemical vapour deposition technique

The magnetic and electrical properties of two different sets of carbon nanospheres synthesised by chemical vapour deposition were investigated, using a state-of-the-art Physical Property Measurement System (PPMS). Scanning electron microscopy imaging of the carbon nanospheres revealed a difference in size with a diameters distribution of approximately 200–400 nm and 400–500 nm. PPMS magnetic measurements of the 400–500 nm diameter carbon nanospheres exhibited diamagnetism at high temperatures and clear superparamagnetic behaviour at very low temperatures (< 10 K). However, ferromagnetism was observed in carbon nanospheres of diameter< 400 nm. The results obtained from both inductively Coupled Plasma Mass Spectrometry and Mössbauer spectroscopy, and as well as the calculated saturation magnetisation indicate that the observed ferromagnetism in the carbon nanospheres of …

Zhihua Liang

Zhihua Liang

Southern Methodist University

arXiv preprint arXiv:2401.15755

Development of A 16: 1 serializer for data transmission at 5 Gbps

Radiation tolerant, high speed and low power serializer ASIC is critical for optical link systems in particle physics experiments. Based on a commercial 0.25 um silicon-on-sapphire CMOS technology, we design a 16:1 serializer with 5 Gbps serial data rate. This ASIC has been submitted for fabrication. The post-layout simulation indicates the deterministic jitter is 54 ps (pk-pk) and random jitter is 3 ps (rms). The power consumption of the serializer is 500 mW. The design details and post layout simulation results are presented in this paper.

Augusto Santiago Cerqueira

Augusto Santiago Cerqueira

Universidade Federal de Juiz de Fora

Physics Letters B

Search for non-resonant production of semi-visible jets using Run 2 data in ATLAS

Semi-visible jets, with a significant contribution to the event's missing transverse momentum, can arise in strongly interacting dark sectors. This results in an event topology where one of the jets can be aligned with the direction of the missing transverse momentum. The first search for semi-visible jets produced via a t-channel mediator exchange is presented. The analysis uses proton-proton collisions with an integrated luminosity of 139 fb−1 and a centre-of-mass energy of 13 TeV, collected with the ATLAS detector during the Run 2 of the LHC. No excess over Standard Model predictions is observed. Assuming a coupling strength of unity between the mediator, a Standard Model quark and a dark quark, mediator masses up to 2.7 TeV are excluded at the 95% confidence level. Upper limits on the coupling strength are also derived.

Saul Youssef

Saul Youssef

Boston University

Injury

The impact of anticoagulant medications on fragility femur fracture care: The hip and femoral fracture anticoagulation surgical timing evaluation (HASTE) study

IntroductionDue to their hypocoagulable state on presentation, anticoagulated patients with femoral fragility fractures typically experience delays to surgery. There are no large, multicentre studies previously carried out within the United Kingdom (UK) evaluating the impact of anticoagulant use in this patient population. This study aimed to evaluate the current epidemiology and compare the perioperative management of anticoagulated and non-anticoagulated femoral fragility fracture patients.MethodsData was prospectively collected through a collaborative, multicentre approach involving hospitals across the United Kingdom. Femoral fragility fracture patients aged ≥60 years and admitted to hospital between 1st May to 31st July 2023 were included. Main outcomes under investigation included time to surgery, receipt of blood transfusion between admission and 48 hours following surgery, length of stay, and 30-day …

luca ambroz

luca ambroz

University of Oxford

Physical Review D

Search for quantum black hole production in lepton+ jet final states using proton-proton collisions at s= 13 TeV with the ATLAS detector

A search for quantum black holes in electron+ jet and muon+ jet invariant mass spectra is performed with 140 fb− 1 of data collected by the ATLAS detector in proton-proton collisions at s= 13 TeV at the Large Hadron Collider. The observed invariant mass spectrum of lepton+ jet pairs is consistent with Standard Model expectations. Upper limits are set at 95% confidence level on the production cross section times branching fractions for quantum black holes decaying into a lepton and a quark in a search region with invariant mass above 2.0 TeV. The resulting quantum black hole lower mass threshold limit is 9.2 TeV in the Arkani-Hamed-Dimopoulos-Dvali model, and 6.8 TeV in the Randall-Sundrum model.

Teng Jian Khoo

Teng Jian Khoo

University of Cambridge

Physics Letters B

Search for non-resonant production of semi-visible jets using Run 2 data in ATLAS

Semi-visible jets, with a significant contribution to the event's missing transverse momentum, can arise in strongly interacting dark sectors. This results in an event topology where one of the jets can be aligned with the direction of the missing transverse momentum. The first search for semi-visible jets produced via a t-channel mediator exchange is presented. The analysis uses proton-proton collisions with an integrated luminosity of 139 fb−1 and a centre-of-mass energy of 13 TeV, collected with the ATLAS detector during the Run 2 of the LHC. No excess over Standard Model predictions is observed. Assuming a coupling strength of unity between the mediator, a Standard Model quark and a dark quark, mediator masses up to 2.7 TeV are excluded at the 95% confidence level. Upper limits on the coupling strength are also derived.

Robert W. Gardner Jr

Robert W. Gardner Jr

University of Chicago

arXiv preprint arXiv:2403.17925

Testing the CDM Cosmological Model with Forthcoming Measurements of the Cosmic Microwave Background with SPT-3G

We forecast constraints on cosmological parameters enabled by three surveys conducted with SPT-3G, the third-generation camera on the South Pole Telescope. The surveys cover separate regions of 1500, 2650, and 6000 to different depths, in total observing 25% of the sky. These regions will be measured to white noise levels of roughly 2.5, 9, and 12 , respectively, in CMB temperature units at 150 GHz by the end of 2024. The survey also includes measurements at 95 and 220 GHz, which have noise levels a factor of ~1.2 and 3.5 times higher than 150 GHz, respectively, with each band having a polarization noise level ~ times higher than the temperature noise. We use a novel approach to obtain the covariance matrices for jointly and optimally estimated gravitational lensing potential bandpowers and unlensed CMB temperature and polarization bandpowers. We demonstrate the ability to test the model via the consistency of cosmological parameters constrained independently from SPT-3G and Planck data, and consider the improvement in constraints on extension parameters from a joint analysis of SPT-3G and Planck data. The cosmological parameters are typically constrained with uncertainties up to ~2 times smaller with SPT-3G data, compared to Planck, with the two data sets measuring significantly different angular scales and polarization levels, providing additional tests of the standard cosmological model.

Teng Jian Khoo

Teng Jian Khoo

University of Cambridge

The European Physical Journal C

A precise measurement of the Z-boson double-differential transverse momentum and rapidity distributions in the full phase space of the decay leptons with the ATLAS …

This paper presents for the first time a precise measurement of the production properties of the Z boson in the full phase space of the decay leptons. This is in contrast to the many previous precise unfolded measurements performed in the fiducial phase space of the decay leptons. The measurement is obtained from proton–proton collision data collected by the ATLAS experiment in 2012 at TeV at the LHC and corresponding to an integrated luminosity of 20.2 fb. The results, based on a total of 15.3 million Z-boson decays to electron and muon pairs, extend and improve a previous measurement of the full set of angular coefficients describing Z-boson decay. The double-differential cross-section distributions in Z-boson transverse momentum  and rapidity  are measured in the pole region, defined as GeV, over the range . The total uncertainty of the normalised cross-section measurements in the peak region of the …

Zheng Wang

Zheng Wang

Lakehead University

Journal of Instrumentation

Momentum scale calibration of the LHCb spectrometer

For accurate determination of particle masses accurate knowledge of the momentum scale of the detectors is crucial. The procedure used to calibrate the momentum scale of the LHCb spectrometer is described and illustrated using the performance obtained with an integrated luminosity of 1.6 fb− 1 collected during 2016 in ???????? running. The procedure uses large samples of ????/????→ ????+ ????− and ????+→ ????/????????+ decays and leads to a relative accuracy of 3× 10− 4 on the momentum scale.

Zheng Wang

Zheng Wang

Lakehead University

arXiv: Tracking of charged particles with nanosecond lifetimes at LHCb

A method is presented to reconstruct charged particles with lifetimes between 10 ps and 10 ns, which considers a combination of their decay products and the partial tracks created by the initial charged particle. Using the Ξ-baryon as a benchmark, the method is demonstrated with simulated events and proton-proton collision data at

Victor Bobrovnikov

Victor Bobrovnikov

Novosibirsk State University

Frontiers of Physics

STCF conceptual design report (Volume 1): Physics & detector

The super τ-charm facility (STCF) is an electron–positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5 × 1035 cm−2·s−1 or higher. The STCF will produce a data sample about a factor of 100 larger than that of the present τ-charm factory — the BEPCII, providing a unique platform for exploring the asymmetry of matter-antimatter (charge-parity violation), in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions, as well as searching for exotic hadrons and physics beyond the Standard Model. The STCF project in China is under development with an extensive R&D program. This document presents the physics opportunities at the STCF, describes conceptual designs of the STCF detector system, and discusses future plans for detector R&D and physics …

Other articles from Physical review letters journal

Jay D Sau

Jay D Sau

University of Maryland, Baltimore

Physical Review Letters

Constrained motions and slow dynamics in one-dimensional bosons with double-well dispersion

We demonstrate slow dynamics and constrained motion of domain walls in one-dimensional (1D) interacting bosons with double-well dispersion. In the symmetry-broken regime, the domain-wall motion is “fractonlike”—a single domain wall cannot move freely, while two nearby domain walls can move collectively. Consequently, we find an Ohmic-like linear response and a vanishing superfluid stiffness, which are atypical for a Bose condensate in a 1D translation invariant closed quantum system. Near Lifshitz quantum critical point, we obtain superfluid stiffness ρ s∼ T and sound velocity v s∼ T 1/2, showing similar unconventional low-temperature slow dynamics to the symmetry-broken regime. Particularly, the superfluid stiffness suggests an order by disorder effect as ρ s increases with temperature. Our results pave the way for studying fractons in ultracold atom experiments.

A. Borschevsky

A. Borschevsky

Rijksuniversiteit Groningen

Physical Review Letters

Nuclear charge radii of silicon isotopes

The nuclear charge radius of Si 32 was determined using collinear laser spectroscopy. The experimental result was confronted with ab initio nuclear lattice effective field theory, valence-space in-medium similarity renormalization group, and mean field calculations, highlighting important achievements and challenges of modern many-body methods. The charge radius of Si 32 completes the radii of the mirror pair Ar 32− Si 32, whose difference was correlated to the slope L of the symmetry energy in the nuclear equation of state. Our result suggests L≤ 60 MeV, which agrees with complementary observables.

Rajashik Tarafder

Rajashik Tarafder

California Institute of Technology

Physical Review Letters

Quantum Precision Limits of Displacement Noise-Free Interferometers

Current laser-interferometric gravitational wave detectors suffer from a fundamental limit to their precision due to the displacement noise of optical elements contributed by various sources. Several schemes for displacement noise-free interferometers (DFI) have been proposed to mitigate their effects. The idea behind these schemes is similar to decoherence-free subspaces in quantum sensing; ie, certain modes contain information about the gravitational waves but are insensitive to the mirror motion (displacement noise). We derive quantum precision limits for general DFI schemes, including optimal measurement basis and optimal squeezing schemes. We introduce a triangular cavity DFI scheme and apply our general bounds to it. Precision analysis of this scheme with different noise models shows that the DFI property leads to interesting sensitivity profiles and improved precision due to noise mitigation and larger …

Stefan Rotter

Stefan Rotter

Technische Universität Wien

Physical Review Letters

Ultrafast Excitation Exchange in a Maxwell Fish-Eye Lens

The strong coupling of quantum emitters to a cavity mode has been of paramount importance in the development of quantum optics. Recently, also the strong coupling to more than a single mode of an electromagnetic resonator has drawn considerable interest. We investigate how this multimode strong coupling regime can be harnessed to coherently control quantum systems. Specifically, we demonstrate that a Maxwell fish-eye lens can be used to implement a pulsed excitation exchange between two distant quantum emitters. This periodic exchange is mediated by single-photon pulses and can be extended to a photon-exchange between two atomic ensembles, for which the coupling strength is enhanced collectively.

Francisco J. Garcia-Vidal

Francisco J. Garcia-Vidal

Universidad Autónoma de Madrid

Physical Review Letters

Lindblad Master Equation Capable of Describing Hybrid Quantum Systems in the Ultrastrong Coupling Regime

Despite significant theoretical efforts devoted to studying the interaction between quantized light modes and matter, the so-called ultrastrong coupling regime still presents significant challenges for theoretical treatments and prevents the use of many common approximations. Here we demonstrate an approach that can describe the dynamics of hybrid quantum systems in any regime of interaction for an arbitrary electromagnetic (EM) environment. We extend a previous method developed for few-mode quantization of arbitrary systems to the case of ultrastrong light-matter coupling, and show that even such systems can be treated using a Lindblad master equation where decay operators act only on the photonic modes by ensuring that the effective spectral density of the EM environment is sufficiently suppressed at negative frequencies. We demonstrate the validity of our framework and show that it outperforms current …

Christian Weber

Christian Weber

Technische Universität Berlin

Physical review letters

Evidence for the Higgs Boson Decay to a Z Boson and a Photon at the LHC

The first evidence for the Higgs boson decay to a Z boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision datasets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140 fb− 1 for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is 2.2±0.7 times the standard model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.

Christian Weber

Christian Weber

Technische Universität Berlin

Physical review letters

Observation of WZγ Production in pp Collisions at s= 13 TeV with the ATLAS Detector

This Letter reports the observation of W Z γ production and a measurement of its cross section using 140.1±1.2 fb− 1 of proton-proton collision data recorded at a center-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. The W Z γ production cross section, with both the W and Z bosons decaying leptonically, p p→ W Z γ→ ℓ′±ν ℓ+ ℓ− γ (ℓ (′)= e, μ), is measured in a fiducial phase-space region defined such that the leptons and the photon have high transverse momentum and the photon is isolated. The cross section is found to be 2.01±0.30 (stat)±0.16 (syst) fb. The corresponding standard model predicted cross section calculated at next-to-leading order in perturbative quantum chromodynamics and at leading order in the electroweak coupling constant is 1.50±0.06 fb. The observed significance of the W Z γ signal is 6.3 σ, compared with an expected significance of 5.0 σ.

Shin-ichi Sasa

Shin-ichi Sasa

Kyoto University

Physical Review Letters

Microscopic Cutoff Dependence of an Entropic Force in Interface Propagation of Stochastic Order Parameter Dynamics

The steady propagation of a (d− 1)-dimensional planer interface in d-dimensional space is studied by analyzing mesoscopic nonconserved order parameter dynamics with two local minima under the influence of thermal noise. In this analysis, an entropic force generating interface propagation is formulated using a perturbation method. It is found that the entropic force singularly depends on an ultraviolet cutoff when d≥ 2. The theoretical calculation is confirmed by numerical simulations with d= 2. The result means that an experimental measurement of the entropic force provides an estimation of the microscopic cutoff of the mesoscopic description.

Martin Grunewald

Martin Grunewald

University College Dublin

Physical Review Letters

Search for Inelastic Dark Matter in Events with Two Displaced Muons and Missing Transverse Momentum in Proton-Proton Collisions at s= 13 TeV

A search for dark matter in events with a displaced nonresonant muon pair and missing transverse momentum is presented. The analysis is performed using an integrated luminosity of 138 fb− 1 of proton-proton (p p) collision data at a center-of-mass energy of 13 TeV produced by the LHC in 2016–2018. No significant excess over the predicted backgrounds is observed. Upper limits are set on the product of the inelastic dark matter production cross section σ (p p→ A′→ χ 1 χ 2) and the decay branching fraction B (χ 2→ χ 1 μ+ μ−), where A′ is a dark photon and χ 1 and χ 2 are states in the dark sector with near mass degeneracy. This is the first dedicated collider search for inelastic dark matter.

Hiranya Peiris

Hiranya Peiris

University College London

Physical Review Letters

Explaining dark matter halo density profiles with neural networks

We use explainable neural networks to connect the evolutionary history of dark matter halos with their density profiles. The network captures independent factors of variation in the density profiles within a low-dimensional representation, which we physically interpret using mutual information. Without any prior knowledge of the halos’ evolution, the network recovers the known relation between the early time assembly and the inner profile and discovers that the profile beyond the virial radius is described by a single parameter capturing the most recent mass accretion rate. The results illustrate the potential for machine-assisted scientific discovery in complicated astrophysical datasets.

Nathaniel Craig

Nathaniel Craig

University of California, Santa Barbara

Physical Review Letters

Effective Field Theories on the Jet Bundle

We develop a generalized field space geometry for higher-derivative scalar field theories, expressing scattering amplitudes in terms of a covariant geometry on the all-order jet bundle. The incorporation of spacetime and field derivative coordinates solves complications due to higher-order derivatives faced by existing approaches to field space geometry. We identify a jet bundle analog to the field space metric that, besides field redefinitions, exhibits invariance under total derivatives. The invariance consequently extends to its amplitude contributions and the canonical covariant geometry.

Bálint Koczor

Bálint Koczor

University of Oxford

Physical Review Letters

Probabilistic interpolation of quantum rotation angles

Quantum computing requires a universal set of gate operations; regarding gates as rotations, any rotation angle must be possible. However a real device may only be capable of B bits of resolution, ie, it might support only 2 B possible variants of a given physical gate. Naive discretization of an algorithm’s gates to the nearest available options causes coherent errors, while decomposing an impermissible gate into several allowed operations increases circuit depth. Conversely, demanding higher B can greatly complexify hardware. Here, we explore an alternative: probabilistic angle interpolation (PAI). This effectively implements any desired, continuously parametrized rotation by randomly choosing one of three discretized gate settings and postprocessing individual circuit outputs. The approach is particularly relevant for near-term applications where one would in any case average over many runs of circuit …

Igor Altsybeev

Igor Altsybeev

St. Petersburg State University

Physical Review Letters

Suppression in Pb-Pb Collisions at the LHC

The production of the ψ (2 S) charmonium state was measured with ALICE in Pb-Pb collisions at s NN= 5.02 TeV, in the dimuon decay channel. A significant signal was observed for the first time at LHC energies down to zero transverse momentum, at forward rapidity (2.5< y< 4). The measurement of the ratio of the inclusive production cross sections of the ψ (2 S) and J/ψ resonances is reported as a function of the centrality of the collisions and of transverse momentum, in the region p T< 12 GeV/c. The results are compared with the corresponding measurements in p p collisions, by forming the double ratio [σ ψ (2 S)/σ J/ψ] Pb− Pb/[σ ψ (2 S)/σ J/ψ] p p. It is found that in Pb-Pb collisions the ψ (2 S) is suppressed by a factor of∼ 2 with respect to the J/ψ. The ψ (2 S) nuclear modification factor R AA was also obtained as a function of both centrality and p T. The results show that the ψ (2 S) resonance yield is strongly …

Igor Altsybeev

Igor Altsybeev

St. Petersburg State University

Physical Review Letters

First Measurement of the Dependence of Incoherent Photonuclear Production

The first measurement of the cross section for incoherent photonuclear production of J/ψ vector mesons as a function of the Mandelstam| t| variable is presented. The measurement was carried out with the ALICE detector at midrapidity,| y|< 0.8, using ultraperipheral collisions of Pb nuclei at a center-of-mass energy per nucleon pair of s NN= 5.02 TeV. This rapidity interval corresponds to a Bjorken-x range (0.3–1.4)× 10− 3. Cross sections are given in five| t| intervals in the range 0.04<| t|< 1 GeV 2 and compared to the predictions by different models. Models that ignore quantum fluctuations of the gluon density in the colliding hadron predict a| t| dependence of the cross section much steeper than in data. The inclusion of such fluctuations in the same models provides a better description of the data.

Elham E Khoda

Elham E Khoda

University of Washington

Physical review letters

Observation of WZγ Production in pp Collisions at â s= 13 TeV with the ATLAS Detector

This Letter reports the observation of W Z γ production and a measurement of its cross section using 140.1±1.2 fb− 1 of proton-proton collision data recorded at a center-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. The W Z γ production cross section, with both the W and Z bosons decaying leptonically, p p→ W Z γ→ ℓ′±ν ℓ+ ℓ− γ (ℓ (′)= e, μ), is measured in a fiducial phase-space region defined such that the leptons and the photon have high transverse momentum and the photon is isolated. The cross section is found to be 2.01±0.30 (stat)±0.16 (syst) fb. The corresponding standard model predicted cross section calculated at next-to-leading order in perturbative quantum chromodynamics and at leading order in the electroweak coupling constant is 1.50±0.06 fb. The observed significance of the W Z γ signal is 6.3 σ, compared with an expected significance of 5.0 σ.

Elham E Khoda

Elham E Khoda

University of Washington

Physical review letters

Evidence for the Higgs Boson Decay to a Z Boson and a Photon at the LHC

The first evidence for the Higgs boson decay to a Z boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision datasets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140 fb− 1 for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is 2.2±0.7 times the standard model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.

David Silvermyr

David Silvermyr

Lunds Universitet

Physical Review Letters

Suppression in Pb-Pb Collisions at the LHC

The production of the ψ (2 S) charmonium state was measured with ALICE in Pb-Pb collisions at s NN= 5.02 TeV, in the dimuon decay channel. A significant signal was observed for the first time at LHC energies down to zero transverse momentum, at forward rapidity (2.5< y< 4). The measurement of the ratio of the inclusive production cross sections of the ψ (2 S) and J/ψ resonances is reported as a function of the centrality of the collisions and of transverse momentum, in the region p T< 12 GeV/c. The results are compared with the corresponding measurements in p p collisions, by forming the double ratio [σ ψ (2 S)/σ J/ψ] Pb− Pb/[σ ψ (2 S)/σ J/ψ] p p. It is found that in Pb-Pb collisions the ψ (2 S) is suppressed by a factor of∼ 2 with respect to the J/ψ. The ψ (2 S) nuclear modification factor R AA was also obtained as a function of both centrality and p T. The results show that the ψ (2 S) resonance yield is strongly …

Kim Christensen

Kim Christensen

Imperial College London

Physical Review Letters

Achievement of target gain larger than unity in an inertial fusion experiment

On December 5, 2022, an indirect drive fusion implosion on the National Ignition Facility (NIF) achieved a target gain G target of 1.5. This is the first laboratory demonstration of exceeding “scientific breakeven”(or G target> 1) where 2.05 MJ of 351 nm laser light produced 3.1 MJ of total fusion yield, a result which significantly exceeds the Lawson criterion for fusion ignition as reported in a previous NIF implosion [H. Abu-Shawareb et al.(Indirect Drive ICF Collaboration), Phys. Rev. Lett. 129, 075001 (2022)]. This achievement is the culmination of more than five decades of research and gives proof that laboratory fusion, based on fundamental physics principles, is possible. This Letter reports on the target, laser, design, and experimental advancements that led to this result.

Giuseppe Callea

Giuseppe Callea

University of Glasgow

Physical review letters

Evidence for the Higgs Boson Decay to a Z Boson and a Photon at the LHC

The first evidence for the Higgs boson decay to a Z boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision datasets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140 fb− 1 for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is 2.2±0.7 times the standard model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.

Giuseppe Callea

Giuseppe Callea

University of Glasgow

Physical review letters

Observation of WZγ Production in pp Collisions at s= 13 TeV with the ATLAS Detector

This Letter reports the observation of W Z γ production and a measurement of its cross section using 140.1±1.2 fb− 1 of proton-proton collision data recorded at a center-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. The W Z γ production cross section, with both the W and Z bosons decaying leptonically, p p→ W Z γ→ ℓ′±ν ℓ+ ℓ− γ (ℓ (′)= e, μ), is measured in a fiducial phase-space region defined such that the leptons and the photon have high transverse momentum and the photon is isolated. The cross section is found to be 2.01±0.30 (stat)±0.16 (syst) fb. The corresponding standard model predicted cross section calculated at next-to-leading order in perturbative quantum chromodynamics and at leading order in the electroweak coupling constant is 1.50±0.06 fb. The observed significance of the W Z γ signal is 6.3 σ, compared with an expected significance of 5.0 σ.