Flexible piezoelectric devices for gastrointestinal motility sensing

Nature biomedical engineering

Published On 2017/10

Improvements in ingestible electronics with the capacity to sense physiological and pathophysiological states have transformed the standard of care for patients. Yet, despite advances in device development, significant risks associated with solid, non-flexible gastrointestinal transiting systems remain. Here, we report the design and use of an ingestible, flexible piezoelectric device that senses mechanical deformation within the gastric cavity. We demonstrate the capabilities of the sensor in both in vitro and ex vivo simulated gastric models, quantify its key behaviours in the gastrointestinal tract using computational modelling and validate its functionality in awake and ambulating swine. Our proof-of-concept device may lead to the development of ingestible piezoelectric devices that might safely sense mechanical variations and harvest mechanical energy inside the gastrointestinal tract for the diagnosis and treatment …

Journal

Nature biomedical engineering

Published On

2017/10

Volume

1

Issue

10

Page

807-817

Authors

Robert Langer

Robert Langer

Massachusetts Institute of Technology

Position

David H. Koch Institute Professor

H-Index(all)

319

H-Index(since 2020)

162

I-10 Index(all)

0

I-10 Index(since 2020)

0

Citation(all)

0

Citation(since 2020)

0

Cited By

0

Research Interests

drug delivery

tissue engineering

biomaterials

nanotechnology

chemistry

Giovanni Traverso

Giovanni Traverso

Massachusetts Institute of Technology

Position

Dept. of Mechanical Engineering ; Brigham and Women's Hospital Harvard Medical School

H-Index(all)

49

H-Index(since 2020)

45

I-10 Index(all)

0

I-10 Index(since 2020)

0

Citation(all)

0

Citation(since 2020)

0

Cited By

0

Research Interests

Biomedical Engineering

Drug Delivery

Cancer Genetics

Canan Dagdeviren

Canan Dagdeviren

Massachusetts Institute of Technology

Position

Assistant Professor of Media Arts and Sciences

H-Index(all)

27

H-Index(since 2020)

23

I-10 Index(all)

0

I-10 Index(since 2020)

0

Citation(all)

0

Citation(since 2020)

0

Cited By

0

Research Interests

electromechanical systems

microfabricated devices

materials science

biomedical devices

Other Articles from authors

Giovanni Traverso

Giovanni Traverso

Massachusetts Institute of Technology

Science Robotics

An ingestible self-propelling device for intestinal reanimation

Postoperative ileus (POI) is the leading cause of prolonged hospital stay after abdominal surgery and is characterized by a functional paralysis of the digestive tract, leading to symptoms such as constipation, vomiting, and functional obstruction. Current treatments are mainly supportive and inefficacious and yield acute side effects. Although electrical stimulation studies have demonstrated encouraging pacing and entraining of the intestinal slow waves, no devices exist today to enable targeted intestinal reanimation. Here, we developed an ingestible self-propelling device for intestinal reanimation (INSPIRE) capable of restoring peristalsis through luminal electrical stimulation. Optimizing mechanical, material, and electrical design parameters, we validated optimal deployment, intestinal electrical luminal contact, self-propelling capability, safety, and degradation of the device in ex vivo and in vivo swine models. We …

Giovanni Traverso

Giovanni Traverso

Massachusetts Institute of Technology

Systemic Delivery of Polypeptides

A method for the systemic delivery of a polypeptide within a subject is provided by creating genetically modified skin cells via topical introduction of a genetically engineered virus which delivers a nucleic acid encoding a therapeutic polypeptide for expression by the skin cells, wherein the expressed therapeutic polypeptide is secreted by the skin cells and is introduced into the circulatory system of the subject.

Giovanni Traverso

Giovanni Traverso

Massachusetts Institute of Technology

bioRxiv

An ingestible, battery-free, tissue-adhering robotic interface for non-invasive and chronic electrostimulation of the gut

Ingestible electronics have the capacity to transform our ability to effectively diagnose and potentially treat a broad set of conditions. Current applications could be significantly enhanced by addressing poor electrode-tissue contact, lack of navigation, short dwell time, and limited battery life. Here we report the development of an ingestible, battery-free, and tissue-adhering robotic interface (IngRI) for non-invasive and chronic electrostimulation of the gut, which addresses challenges associated with contact, navigation, retention, and powering (C-N-R-P) faced by existing ingestibles. We show that near-field inductive coupling operating near 13.56 MHz was sufficient to power and modulate the IngRI to deliver therapeutically relevant electrostimulation, which can be further enhanced by a bio-inspired, hydrogel-enabled adhesive interface. In swine models, we demonstrated the electrical interaction of IngRI with the gastric mucosa by recording conductive signaling from the subcutaneous space. We further observed changes in plasma ghrelin levels, the "hunger hormone," while IngRI was activated in vivo, demonstrating its clinical potential in regulating appetite and treating other endocrine conditions. The results of this study suggest that concepts inspired by soft and wireless skin-interfacing electronic devices can be applied to ingestible electronics with potential clinical applications for evaluating and treating gastrointestinal conditions.

Canan Dagdeviren

Canan Dagdeviren

Massachusetts Institute of Technology

Advanced Science

A Dynamic Ultrasound Phantom with Tissue‐Mimicking Mechanical and Acoustic Properties

Tissue‐mimicking phantoms are valuable tools that aid in improving the equipment and training available to medical professionals. However, current phantoms possess limited utility due to their inability to precisely simulate multiple physical properties simultaneously, which is crucial for achieving a system understanding of dynamic human tissues. In this work, novel materials design and fabrication processes to produce various tissue‐mimicking materials (TMMs) for skin, adipose, muscle, and soft tissue at a human scale are developed. Target properties (Young's modulus, density, speed of sound, and acoustic attenuation) are first defined for each TMM based on literature. Each TMM recipe is developed, associated mechanical and acoustic properties are characterized, and the TMMs are confirmed to have comparable mechanical and acoustic properties with the corresponding human tissues. Furthermore, a …

Giovanni Traverso

Giovanni Traverso

Massachusetts Institute of Technology

Nature Materials

Drinkable in situ-forming tough hydrogels for gastrointestinal therapeutics

Pills are a cornerstone of medicine but can be challenging to swallow. While liquid formulations are easier to ingest, they lack the capacity to localize therapeutics with excipients nor act as controlled release devices. Here we describe drug formulations based on liquid in situ-forming tough (LIFT) hydrogels that bridge the advantages of solid and liquid dosage forms. LIFT hydrogels form directly in the stomach through sequential ingestion of a crosslinker solution of calcium and dithiol crosslinkers, followed by a drug-containing polymer solution of alginate and four-arm poly(ethylene glycol)-maleimide. We show that LIFT hydrogels robustly form in the stomachs of live rats and pigs, and are mechanically tough, biocompatible and safely cleared after 24 h. LIFT hydrogels deliver a total drug dose comparable to unencapsulated drug in a controlled manner, and protect encapsulated therapeutic enzymes and bacteria …

Giovanni Traverso

Giovanni Traverso

Massachusetts Institute of Technology

Device

Modulation of diabetic wound healing using carbon monoxide gas-entrapping materials

Diabetic wound healing is uniquely challenging to manage due to chronic inflammation and heightened microbial growth from elevated interstitial glucose. Carbon monoxide (CO), widely acknowledged as a toxic gas, is also known to provide unique therapeutic immune-modulating effects. To facilitate delivery of CO, we have designed hyaluronic-acid-based CO gas-entrapping materials (CO-GEMs) for topical and prolonged gas delivery to the wound bed. We demonstrate that CO-GEMs promote the healing response in murine diabetic wound models (full-thickness wounds and pressure ulcers) compared to N2-GEMs and untreated controls.

Giovanni Traverso

Giovanni Traverso

Massachusetts Institute of Technology

Nature biomedical engineering

Screening oral drugs for their interactions with the intestinal transportome via porcine tissue explants and machine learning

In vitro systems that accurately model in vivo conditions in the gastrointestinal tract may aid the development of oral drugs with greater bioavailability. Here we show that the interaction profiles between drugs and intestinal drug transporters can be obtained by modulating transporter expression in intact porcine tissue explants via the ultrasound-mediated delivery of small interfering RNAs and that the interaction profiles can be classified via a random forest model trained on the drug–transporter relationships. For 24 drugs with well-characterized drug–transporter interactions, the model achieved 100% concordance. For 28 clinical drugs and 22 investigational drugs, the model identified 58 unknown drug–transporter interactions, 7 of which (out of 8 tested) corresponded to drug-pharmacokinetic measurements in mice. We also validated the model’s predictions for interactions between doxycycline and four drugs …

Giovanni Traverso

Giovanni Traverso

Massachusetts Institute of Technology

Med

Closed-loop automated drug infusion regulator: A clinically translatable, closed-loop drug delivery system for personalized drug dosing

BackgroundDosing of chemotherapies is often calculated according to the weight and/or height of the patient or equations derived from these, such as body surface area (BSA). Such calculations fail to capture intra- and interindividual pharmacokinetic variation, which can lead to order of magnitude variations in systemic chemotherapy levels and thus under- or overdosing of patients.MethodsWe designed and developed a closed-loop drug delivery system that can dynamically adjust its infusion rate to the patient to reach and maintain the drug's target concentration, regardless of a patient's pharmacokinetics (PK).FindingsWe demonstrate that closed-loop automated drug infusion regulator (CLAUDIA) can control the concentration of 5-fluorouracil (5-FU) in rabbits according to a range of concentration-time profiles (which could be useful in chronomodulated chemotherapy) and over a range of PK conditions that …

Giovanni Traverso

Giovanni Traverso

Massachusetts Institute of Technology

Advanced science

Oral Carbon Monoxide Enhances Autophagy Modulation in Prostate, Pancreatic, and Lung Cancers

Modulation of autophagy, specifically its inhibition, stands to transform the capacity to effectively treat a broad range of cancers. However, the clinical efficacy of autophagy inhibitors has been inconsistent. To delineate clinical and epidemiological features associated with autophagy inhibition and a positive oncological clinical response, a retrospective analysis of patients is conducted treated with hydroxychloroquine, a known autophagy inhibitor. A direct correlation between smoking status and inhibition of autophagy with hydroxychloroquine is identified. Recognizing that smoking is associated with elevated circulating levels of carbon monoxide (CO), it is hypothesized that supplemental CO can amplify autophagy inhibition. A novel, gas‐entrapping material containing CO in a pre‐clinical model is applied and demonstrated that CO can dramatically increase the cytotoxicity of autophagy inhibitors and significantly …

Giovanni Traverso

Giovanni Traverso

Massachusetts Institute of Technology

Self-actuating articles

2023-08-31 Assigned to MASSACHUSETTS INSTITUTE OF TECHNOLOGY reassignment MASSACHUSETTS INSTITUTE OF TECHNOLOGY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LANGER, ROBERT S., KHANG, Minsoo, BENSEL, Taylor, ABRAMSON, Alex G., ROXHED, Niclas, SALVADOR, Ester Caffarel2023-08-31 Assigned to THE BRIGHAM AND WOMEN'S HOSPITAL, INC., MASSACHUSETTS INSTITUTE OF TECHNOLOGY reassignment THE BRIGHAM AND WOMEN'S HOSPITAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TRAVERSO, Carlo Giovanni

Canan Dagdeviren

Canan Dagdeviren

Massachusetts Institute of Technology

An Emerging Era: Conformable Ultrasound Electronics

Conformable electronics are regarded as the next generation of personal healthcare monitoring and remote diagnosis devices. In recent years, piezoelectric‐based conformable ultrasound electronics (cUSE) have been intensively studied due to their unique capabilities, including nonradiative monitoring, soft tissue imaging, deep signal decoding, wireless power transfer, portability, and compatibility. This review provides a comprehensive understanding of cUSE for use in biomedical and healthcare monitoring systems and a summary of their recent advancements. Following an introduction to the fundamentals of piezoelectrics and ultrasound transducers, the critical parameters for transducer design are discussed. Next, five types of cUSE with their advantages and limitations are highlighted, and the fabrication of cUSE using advanced technologies is discussed. In addition, the working function, acoustic …

Giovanni Traverso

Giovanni Traverso

Massachusetts Institute of Technology

Nanoscale anisotropy for biomedical applications

Nanoparticles exhibit anisotropy when distinct features can be identified along different axes. Such disruption in shape and/or composition symmetry can change how nanoparticles behave and interact with the surrounding environment compared with their isotropic counterparts. Anisotropic combinations can be limitless and show potential for tackling biological barriers and developing programmable, targeted, and combined delivery of bioactive molecules, mainly when featuring autonomous motion. In this Review, we summarize the main methods for the generation of anisotropic particles at the nanoscale. We further discuss how geometric cues or the incorporation of propulsive agents (chemically or physically driven) improve transport across biological fluids, promote cellular adhesion and internalization, and/or increase tissue penetration. We finally highlight considerations for the design of anisotropic …

Giovanni Traverso

Giovanni Traverso

Massachusetts Institute of Technology

Advanced Healthcare Materials

Percutaneous Intratumoral Immunoadjuvant Gel Increases the Abscopal Effect of Cryoablation for Checkpoint Inhibitor Resistant Cancer

Percutaneous cryoablation is a common clinical therapy for metastatic and primary cancer. There are rare clinical reports of cryoablation inducing regression of distant metastases, known as the “abscopal” effect. Intratumoral immunoadjuvants may be able to augment the abscopal rate of cryoablation, but existing intratumoral therapies suffer from the need for frequent injections and inability to confirm target delivery, leading to poor clinical trial outcomes. To address these shortcomings, an injectable thermoresponsive gel‐based controlled release formulation is developed for the FDA‐approved Toll‐like‐receptor 7 (TLR7) agonist imiquimod (“Imigel”) that forms a tumor‐resident depot upon injection and contains a contrast agent for visualization under computed tomography (CT). The poly‐lactic‐co‐glycolic acid‐polyethylene glycol‐poly‐lactic‐co‐glycolic acid (PLGA‐PEG‐PLGA)‐based amphiphilic copolymer gel …

Giovanni Traverso

Giovanni Traverso

Massachusetts Institute of Technology

Gravity based drug delivery device

A drug delivery device may be configured to delivery an active pharmaceutical ingredient (API) to a subject via the subject's oral-gastrointestinal (GI) tract. The drug delivery device may be configured to deliver a payload of an API while within the GI tract of the subject. The drug delivery device may include a reservoir, a potential energy source, a plurality of outlets, and a plurality of valves, wherein each outlet has a corresponding valve. The drug delivery device may further include a sensor configured to sense the direction of gravity, and the valves may be selectively opened based on a sensed direction of gravity. Thus, the drug delivery device may dispense a dose of API within the GI tracts of the subject based at least in part on the sensed direction of gravity.

Canan Dagdeviren

Canan Dagdeviren

Massachusetts Institute of Technology

Nature Electronics

Publisher Correction: A conformable phased-array ultrasound patch for bladder volume monitoring (Nature Electronics,(2023), 7, 1,(77-90), 10.1038/s41928-023-01068-x)

Correction to: Nature Electronics, published online 16 November 2023. In the version of the article initially published, the affiliation of Weiguo Liu was incorrect and has now been updated to the School of Opto-electronical Engineering, Xi’an Technological University, Xi’an, China in the HTML and PDF versions of the article.

Giovanni Traverso

Giovanni Traverso

Massachusetts Institute of Technology

Journal of pharmaceutical sciences

Silk fibroin-based coatings for pancreatin-dependent drug delivery

Triggerable coatings, such as pH-responsive polymethacrylate copolymers, can be used to protect the active pharmaceutical ingredients contained within oral solid dosage forms from the acidic gastric environment and to facilitate drug delivery directly to the intestine. However, gastrointestinal pH can be highly variable, which can reduce delivery efficiency when using pH-responsive drug delivery technologies. We hypothesized that biomaterials susceptible to proteolysis could be used in combination with other triggerable polymers to develop novel enteric coatings. Bioinformatic analysis suggested that silk fibroin is selectively degradable by enzymes in the small intestine, including chymotrypsin, but resilient to gastric pepsin. Based on the analysis, we developed a silk fibroin-polymethacrylate copolymer coating for oral dosage forms. In vitro and in vivo studies demonstrated that capsules coated with this novel silk …

Giovanni Traverso

Giovanni Traverso

Massachusetts Institute of Technology

Gastroretentive articles for alcohol sensing

Page 2 kinetics with no potential for burst release for weeks to months. In some embodiments, the residence articles described herein comprise biocompatible materials and/or are safe for gastric retention. In certain embodiments, the residence article includes dimensions configured for transesophageal retrieval. In some cases, the residence articles described herein may comprise relatively large doses of drug (eg, greater than or equal to l gram).

2023/12/26

Article Details
Giovanni Traverso

Giovanni Traverso

Massachusetts Institute of Technology

Microneedle Sensors for Point‐of‐Care Diagnostics

Point‐of‐care (POC) has the capacity to support low‐cost, accurate and real‐time actionable diagnostic data. Microneedle sensors have received considerable attention as an emerging technique to evolve blood‐based diagnostics owing to their direct and painless access to a rich source of biomarkers from interstitial fluid. This review systematically summarizes the recent innovations in microneedle sensors with a particular focus on their utility in POC diagnostics and personalized medicine. The integration of various sensing techniques, mostly electrochemical and optical sensing, has been established in diverse architectures of “lab‐on‐a‐microneedle” platforms. Microneedle sensors with tailored geometries, mechanical flexibility, and biocompatibility are constructed with a variety of materials and fabrication methods. Microneedles categorized into four types: metals, inorganics, polymers, and hydrogels, have …

Canan Dagdeviren

Canan Dagdeviren

Massachusetts Institute of Technology

Nature Electronics

A conformable phased-array ultrasound patch for bladder volume monitoring

Ultrasound can be used to image soft tissues in vivo for the early diagnosis and monitoring of disease progression. However, conventional ultrasound probes are rigid, have a narrow field of view and are operator dependent. Conformable transducers have been proposed, but they lack efficient element localization and effective spatial resolution during mechanical deformations. Here we report a conformable ultrasound bladder patch that is based on multiple phased arrays embedded in a stretchable substrate and can provide mechanically robust, conformable and in vivo volumetric organ monitoring. The phased arrays use Sm/La-doped Pb(Mg1/3Nb2/3)O3–PbTiO3 ceramics as the piezoelectric material, which offers superior properties (d33 = 1,000 pC N−1, εr = 7,500 and k33 = 0.77) than conventional piezoelectric ceramics. We use the conformable ultrasound patch in a pilot clinical study of bladder …

Giovanni Traverso

Giovanni Traverso

Massachusetts Institute of Technology

ACS Materials Letters

Activated Metals to Generate Heat for Biomedical Applications

Delivering heat in vivo could enhance a wide range of biomedical therapeutic and diagnostic technologies, including long-term drug delivery devices and cancer treatments. To date, providing thermal energy is highly power-intensive, rendering it oftentimes inaccessible outside of clinical settings. We developed an in vivo heating method based on the exothermic reaction between liquid-metal-activated aluminum and water. After establishing a method for consistent activation, we characterized the heat generation capabilities with thermal imaging and heat flux measurements. We then demonstrated one application of this reaction: to thermally actuate a gastric resident device made from a shape-memory alloy called Nitinol. Finally, we highlight the advantages and future directions for leveraging this novel in situ heat generation method beyond the showcased example.

Other articles from Nature biomedical engineering journal

George J. Pappas

George J. Pappas

University of Pennsylvania

Nature biomedical engineering

Macroscopic resting-state brain dynamics are best described by linear models

It is typically assumed that large networks of neurons exhibit a large repertoire of nonlinear behaviours. Here we challenge this assumption by leveraging mathematical models derived from measurements of local field potentials via intracranial electroencephalography and of whole-brain blood-oxygen-level-dependent brain activity via functional magnetic resonance imaging. We used state-of-the-art linear and nonlinear families of models to describe spontaneous resting-state activity of 700 participants in the Human Connectome Project and 122 participants in the Restoring Active Memory project. We found that linear autoregressive models provide the best fit across both data types and three performance metrics: predictive power, computational complexity and the extent of the residual dynamics unexplained by the model. To explain this observation, we show that microscopic nonlinear dynamics can be …

Aaron T Alpar

Aaron T Alpar

University of Chicago

Nature Biomedical Engineering

A serine-conjugated butyrate prodrug with high oral bioavailability suppresses autoimmune arthritis and neuroinflammation in mice

Butyrate—a metabolite produced by commensal bacteria—has been extensively studied for its immunomodulatory effects on immune cells, including regulatory T cells, macrophages and dendritic cells. However, the development of butyrate as a drug has been hindered by butyrate’s poor oral bioavailability, owing to its rapid metabolism in the gut, its low potency (hence, necessitating high dosing), and its foul smell and taste. Here we report that the oral bioavailability of butyrate can be increased by esterifying it to serine, an amino acid transporter that aids the escape of the resulting odourless and tasteless prodrug (O-butyryl-l-serine, which we named SerBut) from the gut, enhancing its systemic uptake. In mice with collagen-antibody-induced arthritis (a model of rheumatoid arthritis) and with experimental autoimmune encephalomyelitis (a model of multiple sclerosis), we show that SerBut substantially ameliorated …

Yifan Wang

Yifan Wang

University of Texas Southwestern Medical Center

Nature Biomedical Engineering

Synthetic cationic helical polypeptides for the stimulation of antitumour innate immune pathways in antigen-presenting cells

Intracellular DNA sensors regulate innate immunity and can provide a bridge to adaptive immunogenicity. However, the activation of the sensors in antigen-presenting cells (APCs) by natural agonists such as double-stranded DNAs or cyclic nucleotides is impeded by poor intracellular delivery, serum stability, enzymatic degradation and rapid systemic clearance. Here we show that the hydrophobicity, electrostatic charge and secondary conformation of helical polypeptides can be optimized to stimulate innate immune pathways via endoplasmic reticulum stress in APCs. One of the three polypeptides that we engineered activated two major intracellular DNA-sensing pathways (cGAS–STING (for cyclic guanosine monophosphate–adenosine monophosphate synthase–stimulator of interferon genes) and Toll-like receptor 9) preferentially in APCs by promoting the release of mitochondrial DNA, which led to the efficient …

Eray Erturk

Eray Erturk

University of Southern California

Nature Biomedical Engineering

Dynamical flexible inference of nonlinear latent factors and structures in neural population activity

Modelling the spatiotemporal dynamics in the activity of neural populations while also enabling their flexible inference is hindered by the complexity and noisiness of neural observations. Here we show that the lower-dimensional nonlinear latent factors and latent structures can be computationally modelled in a manner that allows for flexible inference causally, non-causally and in the presence of missing neural observations. To enable flexible inference, we developed a neural network that separates the model into jointly trained manifold and dynamic latent factors such that nonlinearity is captured through the manifold factors and the dynamics can be modelled in tractable linear form on this nonlinear manifold. We show that the model, which we named ‘DFINE’ (for ‘dynamical flexible inference for nonlinear embeddings’) achieves flexible inference in simulations of nonlinear dynamics and across neural datasets …

Hanie Yousefi

Hanie Yousefi

University of Toronto

Nature Biomedical Engineering

Identification of druggable regulators of cell secretion via a kinome-wide screen and high-throughput immunomagnetic cell sorting

The identification of genetic regulators of cell secretions is challenging because it requires the sorting of a large number of cells according to their secretion patterns. Here we report the development and applicability of a high-throughput microfluidic method for the analysis of the secretion levels of large populations of immune cells. The method is linked with a kinome-wide loss-of-function CRISPR screen, immunomagnetically sorting the cells according to their secretion levels, and the sequencing of their genomes to identify key genetic modifiers of cell secretion. We used the method, which we validated against flow cytometry for cytokines secreted from primary mouse CD4+ (cluster of differentiation 4-positive) T cells, to discover a subgroup of highly co-expressed kinase-coding genes that regulate interferon-gamma secretion by these cells. We validated the function of the kinases identified using RNA interference …

2023/11/27

Article Details
Jingya Qin

Jingya Qin

University of Delaware

Nature Biomedical Engineering

Small-molecule-mediated control of the anti-tumour activity and off-tumour toxicity of a supramolecular bispecific T cell engager

The broader clinical use of bispecific T cell engagers for inducing anti-tumour toxicity is hindered by their on-target off-tumour toxicity and the associated neurotoxicity and cytokine-release syndrome. Here we show that the off-tumour toxicity of a supramolecular bispecific T cell engager binding to the T cell co-receptor CD3 and to the human epidermal growth factor receptor 2 on breast tumour cells can be halted by disengaging the T cells from the tumour cells via the infusion of the small-molecule drug amantadine, which disassembles the supramolecular aggregate. In mice bearing human epidermal growth factor receptor 2-expressing tumours and with a human immune system, high intravenous doses of such a ‘switchable T cell nanoengager’ elicited strong tumour-specific adaptive immune responses that prevented tumour relapse, while the infusion of amantadine restricted off-tumour toxicity, cytokine-release …

Rakan El-Mayta

Rakan El-Mayta

University of Pennsylvania

Nature Biomedical Engineering

Small-molecule-mediated control of the anti-tumour activity and off-tumour toxicity of a supramolecular bispecific T cell engager

The broader clinical use of bispecific T cell engagers for inducing anti-tumour toxicity is hindered by their on-target off-tumour toxicity and the associated neurotoxicity and cytokine-release syndrome. Here we show that the off-tumour toxicity of a supramolecular bispecific T cell engager binding to the T cell co-receptor CD3 and to the human epidermal growth factor receptor 2 on breast tumour cells can be halted by disengaging the T cells from the tumour cells via the infusion of the small-molecule drug amantadine, which disassembles the supramolecular aggregate. In mice bearing human epidermal growth factor receptor 2-expressing tumours and with a human immune system, high intravenous doses of such a ‘switchable T cell nanoengager’ elicited strong tumour-specific adaptive immune responses that prevented tumour relapse, while the infusion of amantadine restricted off-tumour toxicity, cytokine-release …

Tiexin Wang

Tiexin Wang

University of Michigan-Dearborn

Nature Biomedical Engineering

Optimization of therapeutic antibodies for reduced self-association and non-specific binding via interpretable machine learning

Antibody development, delivery, and efficacy are influenced by antibody-antigen affinity interactions, off-target interactions that reduce antibody bioavailability and pharmacokinetics, and repulsive self-interactions that increase the stability of concentrated antibody formulations and reduce their corresponding viscosity. Yet identifying antibody variants with optimal combinations of these three types of interactions is challenging. Here we show that interpretable machine-learning classifiers, leveraging antibody structural features descriptive of their variable regions and trained on experimental data for a panel of 80 clinical-stage monoclonal antibodies, can identify antibodies with optimal combinations of low off-target binding in a common physiological-solution condition and low self-association in a common antibody-formulation condition. For three clinical-stage antibodies with suboptimal combinations of off-target …

Netravathi Krishnappa

Netravathi Krishnappa

University of California, Berkeley

Nature Biomedical Engineering

Functional annotation of variants of the BRCA2 gene via locally haploid human pluripotent stem cells

Mutations in the BRCA2 gene are associated with sporadic and familial cancer, cause genomic instability and sensitize cancer cells to inhibition by the poly(ADP-ribose) polymerase (PARP). Here we show that human pluripotent stem cells (hPSCs) with one copy of BRCA2 deleted can be used to annotate variants of this gene and to test their sensitivities to PARP inhibition. By using Cas9 to edit the functional BRCA2 allele in the locally haploid hPSCs and in fibroblasts differentiated from them, we characterized essential regions in the gene to identify permissive and loss-of-function mutations. We also used Cas9 to directly test the function of individual amino acids, including amino acids encoded by clinical BRCA2 variants of uncertain significance, and identified alleles that are sensitive to PARP inhibitors used as a standard of care in BRCA2-deficient cancers. Locally haploid human pluripotent stem cells can …

Tae Yun Kim

Tae Yun Kim

Emory & Henry College

Nature Biomedical Engineering

Transient pacing in pigs with complete heart block via myocardial injection of mRNA coding for the T-box transcription factor 18

The adenovirus-mediated somatic transfer of the embryonic T-box transcription factor 18 (TBX18) gene can convert chamber cardiomyocytes into induced pacemaker cells. However, the translation of therapeutic TBX18-induced cardiac pacing faces safety challenges. Here we show that the myocardial expression of synthetic TBX18 mRNA in animals generates de novo pacing and limits innate and inflammatory immune responses. In rats, intramyocardially injected mRNA remained localized, whereas direct myocardial injection of an adenovirus carrying a reporter gene resulted in diffuse expression and in substantial spillover to the liver, spleen and lungs. Transient expression of TBX18 mRNA in rats led to de novo automaticity and pacemaker properties and, compared with the injection of adenovirus, to substantial reductions in the expression of inflammatory genes and in activated macrophage populations. In …

George Havenith

George Havenith

Loughborough University

Nature Biomedical Engineering

Towards on-skin analysis of sweat for managing disorders of substance abuse

A patient-centred system that leverages the analysis of sweat via wearable sensors may better support the management of patients with substance-use disorders.

Ulrich F. Keyser

Ulrich F. Keyser

University of Cambridge

Nature Biomedical Engineering

Sensing the DNA-mismatch tolerance of catalytically inactive Cas9 via barcoded DNA nanostructures in solid-state nanopores

Single-molecule quantification of the strength and sequence specificity of interactions between proteins and nucleic acids would facilitate the probing of protein–DNA binding. Here we show that binding events between the catalytically inactive Cas9 ribonucleoprotein and any pre-defined short sequence of double-stranded DNA can be identified by sensing changes in ionic current as suitably designed barcoded linear DNA nanostructures with Cas9-binding double-stranded DNA overhangs translocate through solid-state nanopores. We designed barcoded DNA nanostructures to study the relationships between DNA sequence and the DNA-binding specificity, DNA-binding efficiency and DNA-mismatch tolerance of Cas9 at the single-nucleotide level. Nanopore-based sensing of DNA-barcoded nanostructures may help to improve the design of efficient and specific ribonucleoproteins for biomedical applications …

Ameya Kirtane

Ameya Kirtane

Harvard University

Nature biomedical engineering

Screening oral drugs for their interactions with the intestinal transportome via porcine tissue explants and machine learning

In vitro systems that accurately model in vivo conditions in the gastrointestinal tract may aid the development of oral drugs with greater bioavailability. Here we show that the interaction profiles between drugs and intestinal drug transporters can be obtained by modulating transporter expression in intact porcine tissue explants via the ultrasound-mediated delivery of small interfering RNAs and that the interaction profiles can be classified via a random forest model trained on the drug–transporter relationships. For 24 drugs with well-characterized drug–transporter interactions, the model achieved 100% concordance. For 28 clinical drugs and 22 investigational drugs, the model identified 58 unknown drug–transporter interactions, 7 of which (out of 8 tested) corresponded to drug-pharmacokinetic measurements in mice. We also validated the model’s predictions for interactions between doxycycline and four drugs …

Ralph DeBerardinis

Ralph DeBerardinis

University of Texas Southwestern Medical Center

Nature Biomedical Engineering

Severely polarized extracellular acidity around tumour cells

Extracellular pH impacts many molecular, cellular and physiological processes, and hence is tightly regulated. Yet, in tumours, dysregulated cancer cell metabolism and poor vascular perfusion cause the tumour microenvironment to become acidic. Here by leveraging fluorescent pH nanoprobes with a transistor-like activation profile at a pH of 5.3, we show that, in cancer cells, hydronium ions are excreted into a small extracellular region. Such severely polarized acidity (pH <5.3) is primarily caused by the directional co-export of protons and lactate, as we show for a diverse panel of cancer cell types via the genetic knockout or inhibition of monocarboxylate transporters, and also via nanoprobe activation in multiple tumour models in mice. We also observed that such spot acidification in ex vivo stained snap-frozen human squamous cell carcinoma tissue correlated with the expression of monocarboxylate transporters …

Michael Snyder

Michael Snyder

Stanford University

Nature Biomedical Engineering

Multi-omics microsampling for the profiling of lifestyle-associated changes in health

Current healthcare practices are reactive and use limited physiological and clinical information, often collected months or years apart. Moreover, the discovery and profiling of blood biomarkers in clinical and research settings are constrained by geographical barriers, the cost and inconvenience of in-clinic venepuncture, low sampling frequency and the low depth of molecular measurements. Here we describe a strategy for the frequent capture and analysis of thousands of metabolites, lipids, cytokines and proteins in 10 μl of blood alongside physiological information from wearable sensors. We show the advantages of such frequent and dense multi-omics microsampling in two applications: the assessment of the reactions to a complex mixture of dietary interventions, to discover individualized inflammatory and metabolic responses; and deep individualized profiling, to reveal large-scale molecular fluctuations as …

Kathleen A. Christie

Kathleen A. Christie

Harvard University

Nature Biomedical Engineering

Optimization of base editors for the functional correction of SMN2 as a treatment for spinal muscular atrophy

Spinal muscular atrophy (SMA) is caused by mutations in SMN1. SMN2 is a paralogous gene with a C•G-to-T•A transition in exon 7, which causes this exon to be skipped in most SMN2 transcripts, and results in low levels of the protein survival motor neuron (SMN). Here we show, in fibroblasts derived from patients with SMA and in a mouse model of SMA that, irrespective of the mutations in SMN1, adenosine base editors can be optimized to target the SMN2 exon-7 mutation or nearby regulatory elements to restore the normal expression of SMN. After optimizing and testing more than 100 guide RNAs and base editors, and leveraging Cas9 variants with high editing fidelity that are tolerant of different protospacer-adjacent motifs, we achieved the reversion of the exon-7 mutation via an A•T-to-G•C edit in up to 99% of fibroblasts, with concomitant increases in the levels of the SMN2 exon-7 transcript and of SMN …

Chuchu Wang

Chuchu Wang

Stanford University

Nature Biomedical Engineering

Multi-omics microsampling for the profiling of lifestyle-associated changes in health

Current healthcare practices are reactive and use limited physiological and clinical information, often collected months or years apart. Moreover, the discovery and profiling of blood biomarkers in clinical and research settings are constrained by geographical barriers, the cost and inconvenience of in-clinic venepuncture, low sampling frequency and the low depth of molecular measurements. Here we describe a strategy for the frequent capture and analysis of thousands of metabolites, lipids, cytokines and proteins in 10 μl of blood alongside physiological information from wearable sensors. We show the advantages of such frequent and dense multi-omics microsampling in two applications: the assessment of the reactions to a complex mixture of dietary interventions, to discover individualized inflammatory and metabolic responses; and deep individualized profiling, to reveal large-scale molecular fluctuations as …

Sijin Luozhong

Sijin Luozhong

Cornell University

Nature Biomedical Engineering

Extracellular vesicles incorporating retrovirus-like capsids for the enhanced packaging and systemic delivery of mRNA into neurons

The blood–brain barrier (BBB) restricts the systemic delivery of messenger RNAs (mRNAs) into diseased neurons. Although leucocyte-derived extracellular vesicles (EVs) can cross the BBB at inflammatory sites, it is difficult to efficiently load long mRNAs into the EVs and to enhance their neuronal uptake. Here we show that the packaging of mRNA into leucocyte-derived EVs and the endocytosis of the EVs by neurons can be enhanced by engineering leucocytes to produce EVs that incorporate retrovirus-like mRNA-packaging capsids. We transfected immortalized and primary bone-marrow-derived leucocytes with DNA or RNA encoding the capsid-forming activity-regulated cytoskeleton-associated (Arc) protein as well as capsid-stabilizing Arc 5’-untranslated-region RNA elements. These engineered EVs inherit endothelial adhesion molecules from donor leukocytes, recruit endogenous enveloping proteins to their …

Seok Hyun (Andy) Yun

Seok Hyun (Andy) Yun

Harvard University

Nature Biomedical Engineering

High-dimensional multi-pass flow cytometry via spectrally encoded cellular barcoding

Advances in immunology, immuno-oncology, drug discovery and vaccine development demand improvements in the capabilities of flow cytometry to allow it to measure more protein markers per cell at multiple timepoints. However, the size of panels of fluorophore markers is limited by overlaps in fluorescence-emission spectra, and flow cytometers typically perform cell measurements at one timepoint. Here we describe multi-pass high-dimensional flow cytometry, a method leveraging cellular barcoding via microparticles emitting near-infrared laser light to track and repeatedly measure each cell using more markers and fewer colours. By using live human peripheral blood mononuclear cells, we show that the method enables the time-resolved characterization of the same cells before and after stimulation, their analysis via a 10-marker panel with minimal compensation for spectral spillover and their deep …

2023/11/30

Article Details
Qian Chen

Qian Chen

Soochow University

Nature Biomedical Engineering

Oncolytic mineralized bacteria as potent locally administered immunotherapeutics

Oncolytic bacteria can trigger innate immune activity. However, the antitumour efficacy of inactivated bacteria is poor, and attenuated live bacteria pose substantial safety risks. Here we show that intratumourally injected paraformaldehyde-fixed bacteria coated with manganese dioxide potently activate innate immune activity, modulate the immunosuppressive tumour microenvironment and trigger tumour-specific immune responses and abscopal antitumour responses. A single intratumoural administration of mineralized Salmonella typhimurium suppressed the growth of multiple types of subcutaneous and orthotopic tumours in mice, rabbits and tree shrews and protected the cured animals against tumour rechallenge. We also show that mineralized bacteria can be administered via arterial embolization to treat orthotopic liver cancer in rabbits. Our findings support the further translational testing of oncolytic …